IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/44895.html
   My bibliography  Save this paper

Ordinal equivalence of values and Pigou-Dalton transfers in TU-games

Author

Listed:
  • Chameni Nembua, Célestin
  • Demsou, Themoi

Abstract

The paper studies the ordinal equivalence of Linear, Efficient and Symmetry (LES) values in TU-games. It demonstrates that most of the results obtained by Carreras F, Freixas J (2008) in the case of semivalues and simple games are transposable on LES values and the whole TU-games set. In particular, linear and weakly linear games are analyzed. We characterize both values which are ordinal equivalent in all TU-games. Pigou-Dalton transfers are introduced for social comparison of values and to shed light on the way payoffs are redistributed from a value to another.

Suggested Citation

  • Chameni Nembua, Célestin & Demsou, Themoi, 2013. "Ordinal equivalence of values and Pigou-Dalton transfers in TU-games," MPRA Paper 44895, University Library of Munich, Germany, revised 09 Mar 2013.
  • Handle: RePEc:pra:mprapa:44895
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/44895/1/MPRA_paper_44895.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Yuan Ju & Peter Borm & Pieter Ruys, 2007. "The consensus value: a new solution concept for cooperative games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 28(4), pages 685-703, June.
    2. Francisco Sanchez-Sanchez & Ruben Juarez & Luis Hernandez-Lamoneda, 2008. "Solutions without dummy axiom for TU cooperative games," Economics Bulletin, AccessEcon, vol. 3(1), pages 1-9.
    3. Célestin Chameni Nembua & Nicolas Gabriel Andjiga, 2008. "Linear, efficient and symmetric values for TU-games," Economics Bulletin, AccessEcon, vol. 3(71), pages 1-10.
    4. Cowell, Frank A., 1980. "Generalized entropy and the measurement of distributional change," European Economic Review, Elsevier, vol. 13(1), pages 147-159, January.
    5. Ebert, Udo, 2010. "The decomposition of inequality reconsidered: Weakly decomposable measures," Mathematical Social Sciences, Elsevier, vol. 60(2), pages 94-103, September.
    6. repec:cup:apsrev:v:48:y:1954:i:03:p:787-792_00 is not listed on IDEAS
    7. repec:ebl:ecbull:v:3:y:2008:i:71:p:1-10 is not listed on IDEAS
    8. Célestin Chameni Nembua, 2006. "Linking Gini to Entropy : Measuring Inequality by an interpersonal class of indices," Economics Bulletin, AccessEcon, vol. 4(5), pages 1-9.
    9. Chameni Nembua, C., 2012. "Linear efficient and symmetric values for TU-games: Sharing the joint gain of cooperation," Games and Economic Behavior, Elsevier, vol. 74(1), pages 431-433.
    10. Carreras, Francesc & Freixas, Josep, 2008. "On ordinal equivalence of power measures given by regular semivalues," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 221-234, March.
    11. Nowak, Andrzej S & Radzik, Tadeusz, 1994. "A Solidarity Value for n-Person Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 23(1), pages 43-48.
    12. Ruiz, Luis M. & Valenciano, Federico & Zarzuelo, Jose M., 1998. "The Family of Least Square Values for Transferable Utility Games," Games and Economic Behavior, Elsevier, vol. 24(1-2), pages 109-130, July.
    13. repec:ebl:ecbull:v:3:y:2008:i:1:p:1-9 is not listed on IDEAS
    14. Lawrence Diffo Lambo & Joël Moulen, 2002. "Ordinal equivalence of power notions in voting games," Theory and Decision, Springer, vol. 53(4), pages 313-325, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Cooperative games; desirability relation; linear values; linear games; Pigou-Dalton transfers; concentration; Lorenz dominance.;

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • D63 - Microeconomics - - Welfare Economics - - - Equity, Justice, Inequality, and Other Normative Criteria and Measurement

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:44895. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.