IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/37814.html
   My bibliography  Save this paper

An asymmetry-steepness parameterization of the generalized lambda distribution

Author

Listed:
  • Chalabi, Yohan / Y.
  • Scott, David J
  • Wuertz, Diethelm

Abstract

The generalized lambda distribution (GLD) is a versatile distribution that can accommodate a wide range of shapes, including fat-tailed and asymmetric distributions. It is defined by its quantile function. We introduce a more intuitive parameterization of the GLD that expresses the location and scale parameters directly as the median and inter-quartile range of the distribution. The remaining two shape parameters characterize the asymmetry and steepness of the distribution respectively. This is in contrasts to the previous parameterizations where the asymmetry and steepness are described by the combination of the two tail indices. The estimation of the GLD parameters is notoriously difficult. With our parameterization, the fitting of the GLD to empirical data can be reduced to a two-parameter estimation problem where the location and scale parameters are estimated by their robust sample estimators. This approach also works when the moments of the GLD do not exist. Moreover, the new parameterization can be used to compare data sets in a convenient asymmetry and steepness shape plot. In this paper, we derive the new formulation, as well as the conditions of the various distribution shape regions and moment conditions. We illustrate the use of the asymmetry and steepness shape plot by comparing equities from the NASDAQ-100 stock index.

Suggested Citation

  • Chalabi, Yohan / Y. & Scott, David J & Wuertz, Diethelm, 2012. "An asymmetry-steepness parameterization of the generalized lambda distribution," MPRA Paper 37814, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:37814
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/37814/1/MPRA_paper_37814.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/43333/3/MPRA_paper_43333.pdf
    File Function: revised version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Asquith, William H., 2007. "L-moments and TL-moments of the generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4484-4496, May.
    2. Karvanen, Juha & Nuutinen, Arto, 2008. "Characterizing the generalized lambda distribution by L-moments," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 1971-1983, January.
    3. Su, Steve, 2007. "Numerical maximum log likelihood estimation for generalized lambda distributions," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 3983-3998, May.
    4. Fournier, B. & Rupin, N. & Bigerelle, M. & Najjar, D. & Iost, A. & Wilcox, R., 2007. "Estimating the parameters of a generalized lambda distribution," Computational Statistics & Data Analysis, Elsevier, vol. 51(6), pages 2813-2835, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Quantile distributions; generalized lambda distribution; shape plot representation;

    JEL classification:

    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:37814. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.