IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/24314.html
   My bibliography  Save this paper

A generalization of Rader's utility representation theorem

Author

Listed:
  • Bosi, Gianni
  • Zuanon, Magalì

Abstract

Rader's utility representation theorem guarantees the existence of an upper semicontinuous utility function for any upper semicontinuous total preorder on a second countable topological space. In this paper we present a generalization of Rader's theorem to not necessarily total preorders that are weakly upper semicontinuous.

Suggested Citation

  • Bosi, Gianni & Zuanon, Magalì, 2010. "A generalization of Rader's utility representation theorem," MPRA Paper 24314, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:24314
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/24314/1/MPRA_paper_24314.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Bosi, G. & Mehta, G. B., 2002. "Existence of a semicontinuous or continuous utility function: a unified approach and an elementary proof," Journal of Mathematical Economics, Elsevier, vol. 38(3), pages 311-328, November.
    2. Alcantud, J. C. R. & Rodriguez-Palmero, C., 1999. "Characterization of the existence of semicontinuous weak utilities," Journal of Mathematical Economics, Elsevier, vol. 32(4), pages 503-509, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Weakly upper semicontinuous preorder; utility function;

    JEL classification:

    • D11 - Microeconomics - - Household Behavior - - - Consumer Economics: Theory
    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24314. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.