IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/24122.html
   My bibliography  Save this paper

The behavior of trust-region methods in FIML estimation

Author

Listed:
  • Weihs, Claus
  • Calzolari, Giorgio
  • Panattoni, Lorenzo

Abstract

This paper presents a Monte-Carlo study on the practical reliability of numerical algorithms for FIML-estimation in nonlinear econometric models. The performance of different techniques of Hessian approximation in trust-region algorithms is compared regarding their "robustness" against "bad" starting points and their "global" and "local" convergence speed, i.e. the gain in the objective function, caused by individual iteration steps far off from and near to the optimum. Concerning robustness and global convergence speed the crude GLS-type Hessian approximations performed best, efficiently exploiting the special structure of the likelihood function. But, concerning local speed, general purpose techniques were strongly superior. So, some appropriate mixtures of these two types of approximations turned out to be the only techniques to be recommended.

Suggested Citation

  • Weihs, Claus & Calzolari, Giorgio & Panattoni, Lorenzo, 1986. "The behavior of trust-region methods in FIML estimation," MPRA Paper 24122, University Library of Munich, Germany, revised 1987.
  • Handle: RePEc:pra:mprapa:24122
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/24122/1/MPRA_paper_24122.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Calzolari, Giorgio & Panattoni, Lorenzo & Weihs, Claus, 1987. "Computational efficiency of FIML estimation," Journal of Econometrics, Elsevier, vol. 36(3), pages 299-310, November.
    2. Calzolari, Giorgio & Panattoni, Lorenzo, 1984. "A Simulation Study on FIML Covariance Matrix," MPRA Paper 28804, University Library of Munich, Germany.
    3. Besley, David A., 1979. "On the computational competitiveness of full-information maximum-likelihood and three-stage least-squares in the estimation of nonlinear, simultaneous-equations models," Journal of Econometrics, Elsevier, vol. 9(3), pages 315-342, February.
    4. Ernst R. Berndt & Bronwyn H. Hall & Robert E. Hall & Jerry A. Hausman, 1974. "Estimation and Inference in Nonlinear Structural Models," NBER Chapters,in: Annals of Economic and Social Measurement, Volume 3, number 4, pages 653-665 National Bureau of Economic Research, Inc.
    5. Parke, William R, 1982. "An Algorithm for FIML and 3SLS Estimation of Large Nonlinear Models," Econometrica, Econometric Society, vol. 50(1), pages 81-95, January.
    6. Calzolari, Giorgio & Panattoni, Lorenzo, 1985. "Gradient methods in FIML estimation of econometric models," MPRA Paper 24843, University Library of Munich, Germany.
    7. Amemiya, Takeshi, 1977. "The Maximum Likelihood and the Nonlinear Three-Stage Least Squares Estimator in the General Nonlinear Simultaneous Equation Model," Econometrica, Econometric Society, vol. 45(4), pages 955-968, May.
    8. Belsley, David A., 1980. "On the efficient computation of the nonlinear full-information maximum-likelihood estimator," Journal of Econometrics, Elsevier, vol. 14(2), pages 203-225, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Econometrics; Monte Carlo methods; numerical methods; trust-region methods; FIML estimation;

    JEL classification:

    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:24122. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter) or (Rebekah McClure). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.