IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/19740.html
   My bibliography  Save this paper

On testing for the mean vector of a multivariate distribution with generalized and {2}-inverses

Author

Listed:
  • Duchesne, Pierre
  • Francq, Christian

Abstract

Generalized Wald's method constructs testing procedures having chi-squared limiting distributions from test statistics having singular normal limiting distributions by use of generalized inverses. In this article, the use of two-inverses for that problem is investigated, in order to propose new test statistics with convenient asymptotic chi-square distributions. Alternatively, Imhof-based test statistics can also be defined, which converge in distribution to weighted sum of chi-square variables; The critical values of such procedures can be found using Imhof's (1961) algorithm. The asymptotic distributions of the test statistics under the null and alternative hypotheses are discussed. Under fixed and local alternatives, the asymptotic powers are compared theoretically. Simulation studies are also performed to compare the exact powers of the test statistics in finite samples. A data analysis on the temperature and precipitation variability in the European Alps illustrates the proposed methods.

Suggested Citation

  • Duchesne, Pierre & Francq, Christian, 2010. "On testing for the mean vector of a multivariate distribution with generalized and {2}-inverses," MPRA Paper 19740, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:19740
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/19740/1/MPRA_paper_19740.pdf
    File Function: original version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(03), pages 348-358, June.
    2. Francq, Christian & Roy, Roch & Zakoian, Jean-Michel, 2005. "Diagnostic Checking in ARMA Models With Uncorrelated Errors," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 532-544, June.
    3. Bhimasankaram, P. & Sengupta, D., 1991. "Testing for the mean vector of a multivariate normal distribution with a possibly singular dispersion matrix and related results," Statistics & Probability Letters, Elsevier, vol. 11(6), pages 473-478, June.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    two-inverses; generalized Wald's method; generalized inverses; multivariate analysis; singular normal distribution;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:19740. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter). General contact details of provider: http://edirc.repec.org/data/vfmunde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.