IDEAS home Printed from https://ideas.repec.org/p/oxf/wpaper/809.html
   My bibliography  Save this paper

Policy Analysis, Forediction, and Forecast Failure

Author

Abstract

Economic policy agencies accompany forecasts with narratives, a combination we call foredictions, often basing policy changes on developments envisaged. Forecast failure need not impugn a forecasting model, although it may, but almost inevitably entails forediction failure and invalidity of the associated policy. Most policy regime changes involve location shifts, which can induce forediction failure unless the policy variable is super exogenous in the policy model. We propose a step-indicator saturation test to check in advance for invariance to policy changes. Systematic forecast failure, or a lack of invariance, previously justified by narratives reveals such stories to be economic fiction.

Suggested Citation

  • Jennifer Castle & David Hendry, 2016. "Policy Analysis, Forediction, and Forecast Failure," Economics Series Working Papers 809, University of Oxford, Department of Economics.
  • Handle: RePEc:oxf:wpaper:809
    as

    Download full text from publisher

    File URL: https://ora.ox.ac.uk/objects/uuid:b988034b-47c3-4c9a-8ad6-c3c9fc437284
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hendry, David F. & Mizon, Grayham E., 2014. "Unpredictability in economic analysis, econometric modeling and forecasting," Journal of Econometrics, Elsevier, vol. 182(1), pages 186-195.
    2. Martin Ellison & Thomas J. Sargent, 2012. "A Defense Of The Fomc," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(4), pages 1047-1065, November.
    3. Søren Johansen & Bent Nielsen, 2016. "Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 321-348, June.
    4. David F. Hendry & Hans-Martin Krolzig, 2005. "The Properties of Automatic "GETS" Modelling," Economic Journal, Royal Economic Society, vol. 115(502), pages 32-61, March.
    5. Jennifer Castle & David Hendry, 2011. "On Not Evaluating Economic Models by Forecast Outcomes," Economics Series Working Papers 538, University of Oxford, Department of Economics.
    6. Pao‐Lin Tien & Tara M. Sinclair & Edward N. Gamber, 2021. "Do Fed Forecast Errors Matter?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 686-712, June.
    7. Hendry, David F. & Massmann, Michael, 2007. "Co-Breaking: Recent Advances and a Synopsis of the Literature," Journal of Business & Economic Statistics, American Statistical Association, vol. 25, pages 33-51, January.
    8. David Hendry & Jurgen A. Doornik & Felix Pretis, 2013. "Step-indicator Saturation," Economics Series Working Papers 658, University of Oxford, Department of Economics.
    9. repec:adr:anecst:y:2002:i:67-68:p:03 is not listed on IDEAS
    10. Carlos Santos & David Hendry & Soren Johansen, 2008. "Automatic selection of indicators in a fully saturated regression," Computational Statistics, Springer, vol. 23(2), pages 317-335, April.
    11. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    12. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809.
    13. Engle, Robert F. & Hendry, David F., 1993. "Testing superexogeneity and invariance in regression models," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 119-139, March.
    14. Stekler, Herman & Symington, Hilary, 2016. "Evaluating qualitative forecasts: The FOMC minutes, 2006–2010," International Journal of Forecasting, Elsevier, vol. 32(2), pages 559-570.
    15. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    16. Edward E. Leamer, 2009. "Macroeconomic Patterns and Stories," Springer Books, Springer, number 978-3-540-46389-4, December.
    17. Stefano Siviero & Daniele Terlizzese, 2008. "Macroeconomic Forecasting: Debunking a Few Old Wives' Tales," Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2007(3), pages 287-316.
    18. Clements, Michael P. & Reade, J. James, 2020. "Forecasting and forecast narratives: The Bank of England Inflation Reports," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1488-1500.
    19. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    20. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    21. Psaradakis, Zacharias & Sola, Martin, 1996. "On the power of tests for superexogeneity and structural invariance," Journal of Econometrics, Elsevier, vol. 72(1-2), pages 151-175.
    22. Jansen, Eilev S & Terasvirta, Timo, 1996. "Testing Parameter Constancy and Super Exogeneity in Econometric Equations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 735-763, November.
    23. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    24. Hans-Martin Krolzig & Juan Toro, 2002. "Testing for Super-Exogeneity in the Presence of Common Deterministic Shifts," Annals of Economics and Statistics, GENES, issue 67-68, pages 41-71.
    25. Q. Farooq Akram & Ragnar Nymoen, 2009. "Model Selection for Monetary Policy Analysis: How Important is Empirical Validity?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(1), pages 35-68, February.
    26. Christina D. Romer & David H. Romer, 2008. "The FOMC versus the Staff: Where Can Monetary Policymakers Add Value?," American Economic Review, American Economic Association, vol. 98(2), pages 230-235, May.
    27. Hendry, David F, 1988. "The Encompassing Implications of Feedback versus Feedforward Mechanisms in Econometrics," Oxford Economic Papers, Oxford University Press, vol. 40(1), pages 132-149, March.
    28. Søren Johansen & Bent Nielsen, 2016. "Rejoinder: Asymptotic Theory of Outlier Detection Algorithms for Linear Time Series Regression Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 374-381, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcela De Castro-Valderrama & Santiago Forero-Alvarado & Nicolás Moreno-Arias & Sara Naranjo-Saldarriaga, 2021. "Unraveling the Exogenous Forces Behind Analysts’ Macroeconomic Forecasts," Borradores de Economia 1184, Banco de la Republica de Colombia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer L. Castle & David F. Hendry & Andrew B. Martinez, 2017. "Evaluating Forecasts, Narratives and Policy Using a Test of Invariance," Econometrics, MDPI, vol. 5(3), pages 1-27, September.
    2. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    3. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    4. David F. Hendry & Grayham E. Mizon, 2016. "Improving the teaching of econometrics," Cogent Economics & Finance, Taylor & Francis Journals, vol. 4(1), pages 1170096-117, December.
    5. Ericsson, Neil R., 2017. "How biased are U.S. government forecasts of the federal debt?," International Journal of Forecasting, Elsevier, vol. 33(2), pages 543-559.
    6. Ericsson, Neil R., 2016. "Eliciting GDP forecasts from the FOMC’s minutes around the financial crisis," International Journal of Forecasting, Elsevier, vol. 32(2), pages 571-583.
    7. David Hendry & Carlos Santos, 2010. "An Automatic Test of Super Exogeneity," Economics Series Working Papers 476, University of Oxford, Department of Economics.
    8. Andrew B. Martinez, 2020. "Forecast Accuracy Matters for Hurricane Damage," Econometrics, MDPI, vol. 8(2), pages 1-24, May.
    9. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2023. "Robust Discovery of Regression Models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 31-51.
    10. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Ragnar Nymoen, 2014. "Misspecification Testing: Non-Invariance of Expectations Models of Inflation," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 553-574, August.
    11. Brian Chi-ang Lin & Siqi Zheng & Felix Pretis & Lea Schneider & Jason E. Smerdon & David F. Hendry, 2016. "Detecting Volcanic Eruptions In Temperature Reconstructions By Designed Break-Indicator Saturation," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 403-429, July.
    12. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    13. Hendry, David F. & Pretis, Felix, 2023. "Analysing differences between scenarios," International Journal of Forecasting, Elsevier, vol. 39(2), pages 754-771.
    14. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    15. Hendry, David F. & Johansen, Søren, 2015. "Model Discovery And Trygve Haavelmo’S Legacy," Econometric Theory, Cambridge University Press, vol. 31(1), pages 93-114, February.
    16. Neil R. Ericsson & Mohammed H. I. Dore & Hassan Butt, 2022. "Detecting and Quantifying Structural Breaks in Climate," Econometrics, MDPI, vol. 10(4), pages 1-27, November.
    17. James Reade & Genaro Sucarrat, 2016. "General-to-Specific (GETS) Modelling And Indicator Saturation With The R Package Gets," Economics Series Working Papers 794, University of Oxford, Department of Economics.
    18. Blake LeBaron, 2013. "Heterogeneous Agents and Long Horizon Features of Asset Prices," Working Papers 63, Brandeis University, Department of Economics and International Business School, revised Sep 2013.
    19. Ericsson, Neil R., 2017. "Interpreting estimates of forecast bias," International Journal of Forecasting, Elsevier, vol. 33(2), pages 563-568.
    20. Jennifer Castle & Takamitsu Kurita, 2019. "Modelling and forecasting the dollar-pound exchange rate in the presence of structural breaks," Economics Series Working Papers 866, University of Oxford, Department of Economics.

    More about this item

    Keywords

    Forediction; Invariance; Super exogeneity; Indicator saturation; Co-breaking; Autometrics;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oxf:wpaper:809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anne Pouliquen (email available below). General contact details of provider: https://edirc.repec.org/data/sfeixuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.