IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/y6dkn.html
   My bibliography  Save this paper

Rural Electrification and Its Impact on Households’ Welfare

Author

Listed:
  • Haidari, Ajmal
  • Institute of Research, Asian

Abstract

Electricity is the key input for urban and rural development which directly effects households’ welfare in micro-level. Least developed countries policy focus on electrifying rural area through off-grid electricity because of high cost in connecting remote areas to national grid. This research estimates the welfare effects of Shorabak small hydropower in Fayzabad city of Badakhshan province, considering the wellbeing of residences in Taliqan city of Takhar provice that obtained from imported electricity from Tajikistan. The dependent variables of education, saving, health, employment, information and environment used as determinant of welfare in linear regression models. Residences of Fayzabad and Taliqan cities constituted the target population, who interviewed through 400 questionnaire using purposive samplings. For the purpose of analysis, regression models run in SPSS version 25. It was found that full access to electricity in Taliqan city positively changed study hours, saving via cheap per kW fee, decreased illness caused by utilizing wood, fuel for cooking and heating purposes. Furthermore, the level of information increased because of access to media particularly TV. A positive notion seen in keeping environment green by removing wood in households as result of using electricity instead. Generally the findings show, by Shorabak hydropower plant inauguration which is 90% completed the same welfare increase will be felt in Fayzabad city as well.

Suggested Citation

  • Haidari, Ajmal & Institute of Research, Asian, 2020. "Rural Electrification and Its Impact on Households’ Welfare," OSF Preprints y6dkn, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:y6dkn
    DOI: 10.31219/osf.io/y6dkn
    as

    Download full text from publisher

    File URL: https://osf.io/download/5fd5b3cd149e75025f0326b2/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/y6dkn?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Huang, Jiashun & Li, Weiping & Guo, Lijia & Hu, Xi & Hall, Jim W., 2020. "Renewable energy and household economy in rural China," Renewable Energy, Elsevier, vol. 155(C), pages 669-676.
    2. Mahwish Siraj & Humayun Khan, 2019. "Impact of Micro Hydropower Projects on Household Income, Expenditure and Diversification of Livelihood Strategies in Azad Jammu and Kashmir," The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 58(1), pages 45-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamali Saraji, Mahyar & Aliasgari, Elahe & Streimikiene, Dalia, 2023. "Assessment of the challenges to renewable energy technologies adoption in rural areas: A Fermatean CRITIC-VIKOR approach," Technological Forecasting and Social Change, Elsevier, vol. 189(C).
    2. Chai, Song & Liu, Qiyun & Yang, Jin, 2023. "Renewable power generation policies in China: Policy instrument choices and influencing factors from the central and local government perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    3. Minli Yu & Fu-Sheng Tsai & Hui Jin & Hejie Zhang, 2022. "Digital finance and renewable energy consumption: evidence from China," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-19, December.
    4. Herez, Amal & El Hage, Hicham & Lemenand, Thierry & Ramadan, Mohamad & Khaled, Mahmoud, 2021. "Parabolic trough photovoltaic/thermal hybrid system: Thermal modeling and parametric analysis," Renewable Energy, Elsevier, vol. 165(P1), pages 224-236.
    5. Wang, Yijiang & Peng, Yizhu & Guo, Kehui & Zheng, Xiaofeng & Darkwa, Jo & Zhong, Hua, 2021. "Experimental investigation on performance improvement of thermoelectric generator based on phase change materials and heat transfer enhancement," Energy, Elsevier, vol. 229(C).
    6. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    7. Gu, Bo & Shen, Huiqiang & Lei, Xiaohui & Hu, Hao & Liu, Xinyu, 2021. "Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method," Applied Energy, Elsevier, vol. 299(C).
    8. Beeler, Lisa & Zablah, Alex R. & Rapp, Adam, 2022. "Ability is in the eye of the beholder: How context and individual factors shape consumer perceptions of digital assistant ability," Journal of Business Research, Elsevier, vol. 148(C), pages 33-46.
    9. Li, Jianglong & Huang, Jiashun, 2020. "The expansion of China's solar energy: Challenges and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Jamroen, Chaowanan & Fongkerd, Chanon & Krongpha, Wipa & Komkum, Preecha & Pirayawaraporn, Alongkorn & Chindakham, Nachaya, 2021. "A novel UV sensor-based dual-axis solar tracking system: Implementation and performance analysis," Applied Energy, Elsevier, vol. 299(C).
    11. Cuevas-Carvajal, N. & Cortes-Ramirez, J.S. & Norato, Julian A. & Hernandez, C. & Montoya-Vallejo, M.F., 2022. "Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Peng, Honggang & Xiao, Zhi & Wang, Jianqiang & Li, Jian, 2021. "A decision support framework for new energy selection in rural areas from the perspectives of information reliability and criterion non-compensation," Energy, Elsevier, vol. 235(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:y6dkn. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.