IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/xtahd_v1.html
   My bibliography  Save this paper

Hybrid machine learning models for marketing business analytics: A selective review

Author

Listed:
  • Saad, Haythem

    (Tunisian Ministry of Equipment and Housing)

Abstract

This is the original version in English of the paper with DOI: 10.5281/zenodo.15470272 published on Zenodo under the Creative Commons Attribution 4.0 International license. Link : https://doi.org/10.5281/zenodo.15470272 A French version is also available as a preprint on HAL under the identifier hal-05078079, version 1: https://hal.science/hal-05078079v1. This paper explores the use of hybrid machine learning models in business data analysis, based on a selective review of four landmark articles. The aim is to identify gaps in the existing literature and justify the importance of these models for enhancing decision-making across various fields, including finance and marketing. The findings indicate that hybrid models can optimize forecasting and campaign personalization, while highlighting the need for specific approaches to address the complexity of business data.

Suggested Citation

  • Saad, Haythem, 2025. "Hybrid machine learning models for marketing business analytics: A selective review," OSF Preprints xtahd_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:xtahd_v1
    DOI: 10.31219/osf.io/xtahd_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/685f8e00ff344967d3e05dac/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/xtahd_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Arnab Mitra & Arnav Jain & Avinash Kishore & Pravin Kumar, 2022. "A Comparative Study of Demand Forecasting Models for a Multi-Channel Retail Company: A Novel Hybrid Machine Learning Approach," SN Operations Research Forum, Springer, vol. 3(4), pages 1-22, December.
    2. Ngai, Eric W.T. & Wu, Yuanyuan, 2022. "Machine learning in marketing: A literature review, conceptual framework, and research agenda," Journal of Business Research, Elsevier, vol. 145(C), pages 35-48.
    3. Zhu, You & Zhou, Li & Xie, Chi & Wang, Gang-Jin & Nguyen, Truong V., 2019. "Forecasting SMEs' credit risk in supply chain finance with an enhanced hybrid ensemble machine learning approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 22-33.
    4. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gazi Salah Uddin & Ou Tang & Maziar Sahamkhadam & Farhad Taghizadeh-Hesary & Muhammad Yahya & Pontus Cerin & Jakob Rehme, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    2. Ghada A. Altarawneh & Ahmad B. Hassanat & Ahmad S. Tarawneh & Ahmad Abadleh & Malek Alrashidi & Mansoor Alghamdi, 2022. "Stock Price Forecasting for Jordan Insurance Companies Amid the COVID-19 Pandemic Utilizing Off-the-Shelf Technical Analysis Methods," Economies, MDPI, vol. 10(2), pages 1-18, February.
    3. Muhammad Ateeq ur REHMAN & Furman ALI & Shang XIE, 2022. "Impact of Foreign Investment News on the Return, Cost of Equity and Cash Flow Activities," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 112-127, December.
    4. Alexey Mikhaylov & Hasan Dinçer & Serhat Yüksel, 2023. "Analysis of financial development and open innovation oriented fintech potential for emerging economies using an integrated decision-making approach of MF-X-DMA and golden cut bipolar q-ROFSs," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-34, December.
    5. Suriyan Jomthanachai & Wai Peng Wong & Khai Wah Khaw, 2024. "An Application of Machine Learning to Logistics Performance Prediction: An Economics Attribute-Based of Collective Instance," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 741-792, February.
    6. Horobet, Alexandra & Boubaker, Sabri & Belascu, Lucian & Negreanu, Cristina Carmencita & Dinca, Zeno, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Technological Forecasting and Social Change, Elsevier, vol. 209(C).
    7. Fosso Wamba, Samuel & Queiroz, Maciel M. & Trinchera, Laura, 2024. "The role of artificial intelligence-enabled dynamic capability on environmental performance: The mediation effect of a data-driven culture in France and the USA," International Journal of Production Economics, Elsevier, vol. 268(C).
    8. Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
    9. Afaq Khattak & Hamad Almujibah & Ahmed Elamary & Caroline Mongina Matara, 2022. "Interpretable Dynamic Ensemble Selection Approach for the Prediction of Road Traffic Injury Severity: A Case Study of Pakistan’s National Highway N-5," Sustainability, MDPI, vol. 14(19), pages 1-18, September.
    10. Goel Himanshu & Agarwal Monika & Chhabra Meghna & Som Bhupender Kumar, 2023. "The Predictive Power of Macroeconomic Variables on the Indian Stock Market Utilizing an Ann Model Approach: An Empirical Investigation Based on BSE Sensex," Folia Oeconomica Stetinensia, Sciendo, vol. 23(2), pages 116-131, December.
    11. Naragain Phumchusri & Nichakan Phupaichitkun, 2024. "Sales prediction hybrid models for retails using promotional pricing strategy as a key demand driver," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(5), pages 461-480, October.
    12. Amin Aminimehr & Ali Raoofi & Akbar Aminimehr & Amirhossein Aminimehr, 2022. "A Comprehensive Study of Market Prediction from Efficient Market Hypothesis up to Late Intelligent Market Prediction Approaches," Computational Economics, Springer;Society for Computational Economics, vol. 60(2), pages 781-815, August.
    13. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    14. Yiyu Xia, 2022. "A Study on Evolution Game of Accounts Receivable Pledge Financing in Supply Chain Finance Model," International Business Research, Canadian Center of Science and Education, vol. 15(12), pages 1-39, December.
    15. Liu, Weihua & Long, Shangsong & Wei, Shuang, 2022. "Correlation mechanism between smart technology and smart supply chain innovation performance: A multi-case study from China's companies with Physical Internet," International Journal of Production Economics, Elsevier, vol. 245(C).
    16. Limor Dina Gonen & Tchai Tavor & Uriel Spiegel, 2024. "Unlocking Market Potential: Strategic Consumer Segmentation and Dynamic Pricing for Balancing Loyalty and Deal Seeking," Mathematics, MDPI, vol. 12(21), pages 1-31, October.
    17. Mingchen Li & Kun Yang & Wencan Lin & Yunjie Wei & Shouyang Wang, 2024. "An interval constraint-based trading strategy with social sentiment for the stock market," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-31, December.
    18. Biswajit Debnath & Amit K. Chattopadhyay & T. Krishna Kumar, 2024. "An Economic Optimization Model of an E-Waste Supply Chain Network: Machine Learned Kinetic Modelling for Sustainable Production," Sustainability, MDPI, vol. 16(15), pages 1-25, July.
    19. Liu, An & Wang, Xinyu & Tang, Jiafu, 2024. "Optimizing multi-channel procurement planning under disruption risks," International Journal of Production Economics, Elsevier, vol. 275(C).
    20. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Palgrave Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:xtahd_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.