IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/gdvbj_v1.html
   My bibliography  Save this paper

A Review of Financial Data Analysis Techniques for Unstructured Data in the Deep Learning Era: Methods, Challenges, and Applications

Author

Listed:
  • Duane, Jackson
  • Morgan, Ashley
  • Carter, Emily

Abstract

Financial institutions are increasingly leveraging---such as text, audio, and images---to gain insights and competitive advantage. Deep learning (DL) has emerged as a powerful paradigm for analyzing these complex data types, transforming tasks like financial news analysis, earnings call interpretation, and document parsing. This paper provides a comprehensive academic review of deep learning techniques for unstructured financial data. We present a taxonomy of data types and DL methods, including natural language processing models, speech and audio processing frameworks, multimodal fusion approaches, and transformer-based architectures. We survey key applications ranging from sentiment analysis and market prediction to fraud detection, credit risk assessment, and beyond, highlighting recent advancements in each domain. Additionally, we discuss major challenges unique to financial settings, such as data scarcity and annotation cost, model interpretability and regulatory compliance, and the dynamic, non-stationary nature of financial data. We enumerate prominent datasets and benchmarks that have accelerated research, and identify research gaps and future directions. The review emphasizes the latest developments up to 2025, including the rise of large pre-trained models and multimodal learning, and outlines how these innovations are shaping the next generation of financial analytics.

Suggested Citation

  • Duane, Jackson & Morgan, Ashley & Carter, Emily, 2025. "A Review of Financial Data Analysis Techniques for Unstructured Data in the Deep Learning Era: Methods, Challenges, and Applications," OSF Preprints gdvbj_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:gdvbj_v1
    DOI: 10.31219/osf.io/gdvbj_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/685ad9afe55caf9ecc5cfdcc/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/gdvbj_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ahmed, Shamima & Alshater, Muneer M. & Ammari, Anis El & Hammami, Helmi, 2022. "Artificial intelligence and machine learning in finance: A bibliometric review," Research in International Business and Finance, Elsevier, vol. 61(C).
    2. Jingru Wang & Wen Ding & Xiaotong Zhu, 2025. "Financial Analysis: Intelligent Financial Data Analysis System Based on LLM-RAG," Papers 2504.06279, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Güler Koştı & İsmail Kayadibi, 2025. "A bibliometric analysis of artificial intelligence and machine learning applications for human resource management," Future Business Journal, Springer, vol. 11(1), pages 1-19, December.
    2. González, Marta Ramos & Ureña, Antonio Partal & Fernández-Aguado, Pilar Gómez, 2023. "Forecasting for regulatory credit loss derived from the COVID-19 pandemic: A machine learning approach," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Gang Kou & Yang Lu, 2025. "FinTech: a literature review of emerging financial technologies and applications," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-34, December.
    4. Pavlos I. Zitis & Stelios M. Potirakis & Alex Alexandridis, 2024. "Forecasting Forex Market Volatility Using Deep Learning Models and Complexity Measures," JRFM, MDPI, vol. 17(12), pages 1-22, December.
    5. Paul Handro & Bogdan Dima, 2024. "Analyzing Financial Markets Efficiency: Insights from a Bibliometric and Content Review," Journal of Financial Studies, Institute of Financial Studies, vol. 16(9), pages 119-175, May.
    6. HUO, Peng & WANG, Luxin, 2022. "Digital economy and business investment efficiency: Inhibiting or facilitating?," Research in International Business and Finance, Elsevier, vol. 63(C).
    7. Darko B. Vuković & Senanu Dekpo-Adza & Stefana Matović, 2025. "AI integration in financial services: a systematic review of trends and regulatory challenges," Humanities and Social Sciences Communications, Palgrave Macmillan, vol. 12(1), pages 1-29, December.
    8. Reams, Trent S. & Carter, Alex, 2025. "Smarter Investing for Everyone: How AI is Changing Financial Advice in Growing Economies," OSF Preprints 6zqmp_v1, Center for Open Science.
    9. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    10. Yasmeen Ansari & Mansour Saleh Albarrak & Noorjahan Sherfudeen & Arfia Aman, 2022. "A Study of Financial Literacy of Investors—A Bibliometric Analysis," IJFS, MDPI, vol. 10(2), pages 1-16, May.
    11. Florindo, Joao B. & Lima, Reneé Rodrigues & dos Santos, Francisco Alves & Alves, Jerson Leite, 2025. "GHENet: Attention-based Hurst exponents for the forecasting of stock market indexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 667(C).
    12. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).
    13. Ren, Tingting & Li, Shaofang & Zhang, Siying, 2024. "Stock market extreme risk prediction based on machine learning: Evidence from the American market," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).
    14. Mark Potanin & Andrey Chertok & Konstantin Zorin & Cyril Shtabtsovsky, 2023. "Startup success prediction and VC portfolio simulation using CrunchBase data," Papers 2309.15552, arXiv.org.
    15. Green, Alicia, 2025. "AI-Driven Financial Intelligence Systems: A New Era of Risk Detection and Strategic Analysis," OSF Preprints ynph2_v1, Center for Open Science.
    16. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    17. Li Xian Liu & Zhiyue Sun & Kunpeng Xu & Chao Chen, 2024. "AI-Driven Financial Analysis: Exploring ChatGPT’s Capabilities and Challenges," IJFS, MDPI, vol. 12(3), pages 1-35, June.
    18. Duane, Jackson & Ren, Alicia & Zhang, Wei, 2025. "Deep Learning Models for Financial Data Analysis: A Focused Review of Recent Advances," OSF Preprints ctxf9_v1, Center for Open Science.
    19. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Chopra, Ritika & Dev, Dhairya, 2024. "Past, present, and future of block-chain in finance," Journal of Business Research, Elsevier, vol. 177(C).
    20. Chen, Dangxing & Ye, Jiahui & Ye, Weicheng, 2023. "Interpretable selective learning in credit risk," Research in International Business and Finance, Elsevier, vol. 65(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:gdvbj_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.