Deep Learning Models for Financial Data Analysis: A Focused Review of Recent Advances
Author
Abstract
Suggested Citation
DOI: 10.31219/osf.io/ctxf9_v1
Download full text from publisher
References listed on IDEAS
- Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Jingru Wang & Wen Ding & Xiaotong Zhu, 2025. "Financial Analysis: Intelligent Financial Data Analysis System Based on LLM-RAG," Papers 2504.06279, arXiv.org.
- Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org, revised Nov 2025.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
- Duane, Jackson & Morgan, Ashley & Carter, Emily, 2025. "A Review of Financial Data Analysis Techniques for Unstructured Data in the Deep Learning Era: Methods, Challenges, and Applications," OSF Preprints gdvbj_v1, Center for Open Science.
- Carolina Camassa, 2023. "Legal NLP Meets MiCAR: Advancing the Analysis of Crypto White Papers," Papers 2310.10333, arXiv.org, revised Oct 2023.
- Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
- Bartosz Bieganowski & Robert Ślepaczuk, 2024.
"Supervised Autoencoder MLP for Financial Time Series Forecasting,"
Working Papers
2024-03, Faculty of Economic Sciences, University of Warsaw.
- Bartosz Bieganowski & Robert Slepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Papers 2404.01866, arXiv.org, revised Jun 2024.
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
- Qizhao Chen & Hiroaki Kawashima, 2025. "Adaptive Alpha Weighting with PPO: Enhancing Prompt-Based LLM-Generated Alphas in Quant Trading," Papers 2509.01393, arXiv.org.
- Reams, Trent S. & Carter, Alex, 2025. "Smarter Investing for Everyone: How AI is Changing Financial Advice in Growing Economies," OSF Preprints 6zqmp_v1, Center for Open Science.
- Thi Thu Giang Nguyen & Robert Ślepaczuk, 2022. "The efficiency of various types of input layers of LSTM model in investment strategies on S&P500 index," Working Papers 2022-29, Faculty of Economic Sciences, University of Warsaw.
- Heyam H. Al-Baity, 2023. "The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
- Xinghong Fu & Masanori Hirano & Kentaro Imajo, 2024. "Financial Fine-tuning a Large Time Series Model," Papers 2412.09880, arXiv.org.
- Hu, Yi & Kim, Hyeonjin & Ye, Kai & Lu, Ning, 2025. "Applying fine-tuned LLMs for reducing data needs in load profile analysis," Applied Energy, Elsevier, vol. 377(PC).
- Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
- Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
- Tao Ren & Ruihan Zhou & Jinyang Jiang & Jiafeng Liang & Qinghao Wang & Yijie Peng, 2024. "RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search," Papers 2402.07080, arXiv.org, revised Feb 2024.
- Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
- Jingyi Gu & Sarvesh Shukla & Junyi Ye & Ajim Uddin & Guiling Wang, 2023. "Deep learning model with sentiment score and weekend effect in stock price prediction," SN Business & Economics, Springer, vol. 3(7), pages 1-20, July.
- Alexandra Horobet & Sabri Boubaker & Lucian Belascu & Cristina Carmencita Negreanu & Zeno Dinca, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Post-Print hal-04990283, HAL.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-08-18 (Big Data)
- NEP-CMP-2025-08-18 (Computational Economics)
- NEP-FOR-2025-08-18 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ctxf9_v1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/osf/osfxxx/ctxf9_v1.html