IDEAS home Printed from https://ideas.repec.org/p/osf/osfxxx/ctxf9_v1.html

Deep Learning Models for Financial Data Analysis: A Focused Review of Recent Advances

Author

Listed:
  • Duane, Jackson
  • Ren, Alicia
  • Zhang, Wei

Abstract

This paper presents a focused review of recent academic advances in the application of deep learning techniques to algorithmic trading. While traditional machine learning models have long been used in financial forecasting, the last decade has seen a rapid expansion in the use of deep learning architectures due to their ability to model non-linear dependencies, learn hierarchical features, and process high-dimensional sequential data. We categorize and synthesize developments across three primary paradigms: supervised deep learning models for price prediction and signal generation, unsupervised and generative approaches for feature extraction and data augmentation, and reinforcement learning agents for decision-making in trading environments. By analyzing over 30 recent peer-reviewed studies, we highlight how modern models such as attention-based networks, graph neural networks, and deep Q-learning have enhanced the robustness and adaptability of trading algorithms. We also discuss key limitations—including overfitting, data non-stationarity, and lack of interpretability—and summarize efforts to address them. This review serves as a resource for researchers seeking a clear, academically grounded perspective on how deep learning is currently reshaping algorithmic trading systems.

Suggested Citation

  • Duane, Jackson & Ren, Alicia & Zhang, Wei, 2025. "Deep Learning Models for Financial Data Analysis: A Focused Review of Recent Advances," OSF Preprints ctxf9_v1, Center for Open Science.
  • Handle: RePEc:osf:osfxxx:ctxf9_v1
    DOI: 10.31219/osf.io/ctxf9_v1
    as

    Download full text from publisher

    File URL: https://osf.io/download/687fcf4ba21f45d35b1f63aa/
    Download Restriction: no

    File URL: https://libkey.io/10.31219/osf.io/ctxf9_v1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sangyeon Kim & Myungjoo Kang, 2019. "Financial series prediction using Attention LSTM," Papers 1902.10877, arXiv.org.
    2. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    3. Jingru Wang & Wen Ding & Xiaotong Zhu, 2025. "Financial Analysis: Intelligent Financial Data Analysis System Based on LLM-RAG," Papers 2504.06279, arXiv.org.
    4. Hongyang Yang & Xiao-Yang Liu & Christina Dan Wang, 2023. "FinGPT: Open-Source Financial Large Language Models," Papers 2306.06031, arXiv.org, revised Nov 2025.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    2. Duane, Jackson & Morgan, Ashley & Carter, Emily, 2025. "A Review of Financial Data Analysis Techniques for Unstructured Data in the Deep Learning Era: Methods, Challenges, and Applications," OSF Preprints gdvbj_v1, Center for Open Science.
    3. Carolina Camassa, 2023. "Legal NLP Meets MiCAR: Advancing the Analysis of Crypto White Papers," Papers 2310.10333, arXiv.org, revised Oct 2023.
    4. Pedro Reis & Ana Paula Serra & Jo~ao Gama, 2025. "The Role of Deep Learning in Financial Asset Management: A Systematic Review," Papers 2503.01591, arXiv.org.
    5. Bartosz Bieganowski & Robert Ślepaczuk, 2024. "Supervised Autoencoder MLP for Financial Time Series Forecasting," Working Papers 2024-03, Faculty of Economic Sciences, University of Warsaw.
    6. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
    8. Hoyoung Lee & Youngsoo Choi & Yuhee Kwon, 2024. "Quantifying Qualitative Insights: Leveraging LLMs to Market Predict," Papers 2411.08404, arXiv.org.
    9. Qizhao Chen & Hiroaki Kawashima, 2025. "Adaptive Alpha Weighting with PPO: Enhancing Prompt-Based LLM-Generated Alphas in Quant Trading," Papers 2509.01393, arXiv.org.
    10. Reams, Trent S. & Carter, Alex, 2025. "Smarter Investing for Everyone: How AI is Changing Financial Advice in Growing Economies," OSF Preprints 6zqmp_v1, Center for Open Science.
    11. Thi Thu Giang Nguyen & Robert Ślepaczuk, 2022. "The efficiency of various types of input layers of LSTM model in investment strategies on S&P500 index," Working Papers 2022-29, Faculty of Economic Sciences, University of Warsaw.
    12. Heyam H. Al-Baity, 2023. "The Artificial Intelligence Revolution in Digital Finance in Saudi Arabia: A Comprehensive Review and Proposed Framework," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    13. Xinghong Fu & Masanori Hirano & Kentaro Imajo, 2024. "Financial Fine-tuning a Large Time Series Model," Papers 2412.09880, arXiv.org.
    14. Hu, Yi & Kim, Hyeonjin & Ye, Kai & Lu, Ning, 2025. "Applying fine-tuned LLMs for reducing data needs in load profile analysis," Applied Energy, Elsevier, vol. 377(PC).
    15. Saadet Eskiizmirliler & Korhan Günel & Refet Polat, 2021. "On the Solution of the Black–Scholes Equation Using Feed-Forward Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 58(3), pages 915-941, October.
    16. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    17. Tao Ren & Ruihan Zhou & Jinyang Jiang & Jiafeng Liang & Qinghao Wang & Yijie Peng, 2024. "RiskMiner: Discovering Formulaic Alphas via Risk Seeking Monte Carlo Tree Search," Papers 2402.07080, arXiv.org, revised Feb 2024.
    18. Wentao Zhang & Lingxuan Zhao & Haochong Xia & Shuo Sun & Jiaze Sun & Molei Qin & Xinyi Li & Yuqing Zhao & Yilei Zhao & Xinyu Cai & Longtao Zheng & Xinrun Wang & Bo An, 2024. "A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist," Papers 2402.18485, arXiv.org, revised Jun 2024.
    19. Jingyi Gu & Sarvesh Shukla & Junyi Ye & Ajim Uddin & Guiling Wang, 2023. "Deep learning model with sentiment score and weekend effect in stock price prediction," SN Business & Economics, Springer, vol. 3(7), pages 1-20, July.
    20. Alexandra Horobet & Sabri Boubaker & Lucian Belascu & Cristina Carmencita Negreanu & Zeno Dinca, 2024. "Technology-driven advancements: Mapping the landscape of algorithmic trading literature," Post-Print hal-04990283, HAL.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:osf:osfxxx:ctxf9_v1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: OSF (email available below). General contact details of provider: https://osf.io/preprints/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.