IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2008.07836.html
   My bibliography  Save this paper

Unveiling the directional network behind the financial statements data using volatility constraint correlation

Author

Listed:
  • Tomoshiro Ochiai
  • Jose C. Nacher

Abstract

Financial data, such as financial statements, contain valuable and critical information that may assist stakeholders and investors in optimizing their capital to maximize overall economic growth. Since there are many variables in financial statements, it is crucial to determine the causal relationships, that is, the directional influence between them in a structural way, as well as to understand the associated accounting mechanisms. However, the analysis of variable-to-variable relationships in financial information using standard correlation functions is not sufficient to unveil directionality. Here, we use the volatility constrained correlation (VC correlation) method to predict the directional relationship between two arbitrary variables. We apply the VC correlation method to five significant financial information variables (revenue, net income, operating income, own capital, and market capitalization) of 2321 firms listed on the Tokyo Stock Exchange over 28 years from 1990 to 2018. This study identifies which accounting variables are influential and which are susceptible. Our findings show that operating income is the most influential variable while market capitalization and revenue are the most susceptible variables. Surprisingly, the results differ from the existing intuitive understanding suggested by widely used investment strategy indicators, the price--earnings ratio and the price-to-book ratio, which report that net income and own capital are the most influential variables affecting market capitalization. This analysis may assist managers, stakeholders, and investors to improve financial management performance and optimize firms' financial strategies in future operations.

Suggested Citation

  • Tomoshiro Ochiai & Jose C. Nacher, 2020. "Unveiling the directional network behind the financial statements data using volatility constraint correlation," Papers 2008.07836, arXiv.org, revised Jun 2023.
  • Handle: RePEc:arx:papers:2008.07836
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2008.07836
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sunita Goel & Jagdish Gangolly, 2012. "Beyond The Numbers: Mining The Annual Reports For Hidden Cues Indicative Of Financial Statement Fraud," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 19(2), pages 75-89, April.
    2. Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
    3. Ochiai, Tomoshiro & Nacher, Jose C., 2014. "Volatility-constrained correlation identifies the directionality of the influence between Japan’s Nikkei 225 and other financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 364-375.
    4. Wei Bao & Jun Yue & Yulei Rao, 2017. "A deep learning framework for financial time series using stacked autoencoders and long-short term memory," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-24, July.
    5. Ochiai, Tomoshiro & Nacher, Jose C., 2019. "VC correlation analysis on the overnight and daytime return in Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 537-545.
    6. Xuemin (Sterling) Yan & Lingling Zheng, 2017. "Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1382-1423.
    7. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ochiai, Tomoshiro & Nacher, Jose C., 2022. "Unveiling the directional network behind financial statements data using volatility constraint correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    2. Adebayo Oshingbesan & Eniola Ajiboye & Peruth Kamashazi & Timothy Mbaka, 2022. "Model-Free Reinforcement Learning for Asset Allocation," Papers 2209.10458, arXiv.org.
    3. Yang Qiao & Yiping Xia & Xiang Li & Zheng Li & Yan Ge, 2023. "Higher-order Graph Attention Network for Stock Selection with Joint Analysis," Papers 2306.15526, arXiv.org.
    4. Pawel Dlotko & Wanling Qiu & Simon Rudkin, 2019. "Financial ratios and stock returns reappraised through a topological data analysis lens," Papers 1911.10297, arXiv.org.
    5. Zhu, Zhaobo & Sun, Licheng & Yung, Kenneth, 2020. "Fundamental strength strategy: The role of investor sentiment versus limits to arbitrage," International Review of Financial Analysis, Elsevier, vol. 71(C).
    6. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    7. Wang, Feifei & Yan, Xuemin Sterling & Zheng, Lingling, 2024. "Institutional trading, news, and accounting anomalies," Journal of Accounting and Economics, Elsevier, vol. 78(1).
    8. Hanyao Gao & Gang Kou & Haiming Liang & Hengjie Zhang & Xiangrui Chao & Cong-Cong Li & Yucheng Dong, 2024. "Machine learning in business and finance: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-35, December.
    9. Qiyuan Peng & Sheri Tice & Ling Zhou, 2023. "Mutual funds and stock fundamentals," Review of Quantitative Finance and Accounting, Springer, vol. 60(4), pages 1329-1361, May.
    10. Antoine Falck & Adam Rej & David Thesmar, 2021. "Why and how systematic strategies decay," Papers 2105.01380, arXiv.org.
    11. Yunus Santur, 2023. "A Novel Financial Forecasting Approach Using Deep Learning Framework," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1341-1392, October.
    12. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    13. Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
    14. Lam, Kevin C.K. & Sami, Heibatollah & Zhou, Haiyan, 2013. "Changes in the value relevance of accounting information over time: Evidence from the emerging market of China," Journal of Contemporary Accounting and Economics, Elsevier, vol. 9(2), pages 123-135.
    15. Roni Michaely & Stefano Rossi & Michael Weber & Michael Weber, 2017. "The Information Content of Dividends: Safer Profits, Not Higher Profits," CESifo Working Paper Series 6751, CESifo.
    16. Florian Huber & Tamás Krisztin & Philipp Piribauer, 2017. "Forecasting Global Equity Indices Using Large Bayesian Vars," Bulletin of Economic Research, Wiley Blackwell, vol. 69(3), pages 288-308, July.
    17. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    18. Andrea Bucci, 2020. "Realized Volatility Forecasting with Neural Networks," Journal of Financial Econometrics, Oxford University Press, vol. 18(3), pages 502-531.
    19. Jaydip Sen & Sidra Mehtab & Abhishek Dutta & Saikat Mondal, 2022. "Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model," Papers 2203.01326, arXiv.org.
    20. Andrew Y Chen & Tom Zimmermann & Jeffrey Pontiff, 2020. "Publication Bias and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(2), pages 249-289.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2008.07836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.