IDEAS home Printed from
   My bibliography  Save this paper

A Necessary but Insufficient Condition for the Stochastic Binary Choice Problem


  • Itzhak Gilboa


The "stochastic binary choice problem" is the following: Let there be given n alternatives, to be denoted by N = {1, ..., n}. For each of the n! possible linear orderings {m}m = 1n of the alternatives, define a matrix Yn × n(m)(1 ≤ m ≤ n!) as follows: Given a real matrix Qn × n, when is Q in the convex hull of {Y(m)}m? In this paper some necessary conditions on Q--the "diagonal inequality"--are formulated and they are proved to generalize the Cohen-Falmagne conditions. A counterexample shows that the diagonal inequality is insufficient (as are hence, perforce, the Cohen-Falmagne conditions). The same example is used to show that Fishburn's conditions are also insufficient.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Itzhak Gilboa, 1989. "A Necessary but Insufficient Condition for the Stochastic Binary Choice Problem," Discussion Papers 818, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  • Handle: RePEc:nwu:cmsems:818

    Download full text from publisher

    File URL:
    File Function: main text
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Barbera, Salvador & Pattanaik, Prasanta K, 1986. "Falmagne and the Rationalizability of Stochastic Choices in Terms of Random Orderings," Econometrica, Econometric Society, vol. 54(3), pages 707-715, May.
    2. Daniel McFadden, 2005. "Revealed stochastic preference: a synthesis," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 245-264, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jerry S. Kelly & Shaofang Qi, 2016. "A conjecture on the construction of orderings by Borda’s rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(1), pages 113-125, June.
    2. Itzhak Gilboa & Dov Monderer, 1989. "A Game-Theoretic Approach to the Binary Stochastic Choice Problem," Discussion Papers 854, Northwestern University, Center for Mathematical Studies in Economics and Management Science.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nwu:cmsems:818. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fran Walker). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.