IDEAS home Printed from https://ideas.repec.org/p/nex/wpaper/breakdown.html
   My bibliography  Save this paper

Detecting the Breakdown of Traffic

Author

Listed:
  • Xi Zou
  • David Levinson

    () (Nexus (Networks, Economics, and Urban Systems) Research Group, Department of Civil Engineering, University of Minnesota)

Abstract

Timely traffic prediction is important in advanced traffic management systems to make possible rapid and effective response by traffic control facilities. From the observations of traffic flow, the time series present repetitive or regular behavior over time that distinguishes time series analysis of traffic flow from classical statistics, which assumes independence over time. By taking advantage of tools in frequency domain analysis, this paper proposes a new criterion function that can detect the onset of congestion. It is found that the changing rate of the cross-correlation between density dynamics and flow rate determines traffic transferring from free flow phase to the congestion phase. A definition of traffic stability is proposed based on the criterion function. The new method suggests that an unreturnable transition will occur only if the changing rate of the cross-correlation exceeds a threshold. Based on real traffic data, detection of congestion is conducted in which the new scheme performs well compared to previous studies.

Suggested Citation

  • Xi Zou & David Levinson, 2006. "Detecting the Breakdown of Traffic," Working Papers 000034, University of Minnesota: Nexus Research Group.
  • Handle: RePEc:nex:wpaper:breakdown
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/11299/179810
    File Function: First version, 2007
    Download Restriction: no

    References listed on IDEAS

    as
    1. Daganzo, C. F. & Cassidy, M. J. & Bertini, R. L., 1999. "Possible explanations of phase transitions in highway traffic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(5), pages 365-379, June.
    2. Okutani, Iwao & Stephanedes, Yorgos J., 1984. "Dynamic prediction of traffic volume through Kalman filtering theory," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Congestion; Queueing; Traffic Flow; Congestion Pricing;

    JEL classification:

    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nex:wpaper:breakdown. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David Levinson). General contact details of provider: http://edirc.repec.org/data/nexmnus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.