IDEAS home Printed from https://ideas.repec.org/p/nbr/nberwo/20098.html
   My bibliography  Save this paper

Communicating Uncertainty in Official Economic Statistics

Author

Listed:
  • Charles F. Manski

Abstract

Federal statistical agencies in the United States and analogous agencies elsewhere commonly report official economic statistics as point estimates, without accompanying measures of error. Users of the statistics may incorrectly view them as error-free or may incorrectly conjecture error magnitudes. This paper discusses strategies to mitigate misinterpretation of official statistics by communicating uncertainty to the public. Sampling error can be measured using established statistical principles. The challenge is to satisfactorily measure the various forms of non-sampling error. I find it useful to distinguish transitory statistical uncertainty, permanent statistical uncertainty, and conceptual uncertainty. I illustrate how each arises as the Bureau of Economic Analysis periodically revises GDP estimates, the Census Bureau generates household income statistics from surveys with non-response, and the Bureau of Labor Statistics seasonally adjusts employment statistics.

Suggested Citation

  • Charles F. Manski, 2014. "Communicating Uncertainty in Official Economic Statistics," NBER Working Papers 20098, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberwo:20098
    Note: EFG PE TWP
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/w20098.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444606, January.
    2. Arnold Zellner, 1979. "Seasonal Analysis of Economic Time Series," NBER Books, National Bureau of Economic Research, Inc, number zell79-1, December.
    3. Horowitz, Joel L. & Manski, Charles F., 1998. "Censoring of outcomes and regressors due to survey nonresponse: Identification and estimation using weights and imputations," Journal of Econometrics, Elsevier, vol. 84(1), pages 37-58, May.
    4. Sims,Christopher A. (ed.), 1994. "Advances in Econometrics," Cambridge Books, Cambridge University Press, number 9780521444590, January.
    5. Charles F. Manski, 1989. "Anatomy of the Selection Problem," Journal of Human Resources, University of Wisconsin Press, vol. 24(3), pages 343-360.
    6. Dean Croushore, 2011. "Frontiers of Real-Time Data Analysis," Journal of Economic Literature, American Economic Association, vol. 49(1), pages 72-100, March.
    7. J. Steven Landefeld & Eugene P. Seskin & Barbara M. Fraumeni, 2008. "Taking the Pulse of the Economy: Measuring GDP," Journal of Economic Perspectives, American Economic Association, vol. 22(2), pages 193-216, Spring.
    8. Guido W. Imbens & Charles F. Manski, 2004. "Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 72(6), pages 1845-1857, November.
    9. Charles F. Manski, 2011. "Policy Analysis with Incredible Certitude," Economic Journal, Royal Economic Society, vol. 121(554), pages 261-289, August.
    10. Clive W. J. Granger, 1979. "Seasonality: Causation, Interpretation, and Implications," NBER Chapters, in: Seasonal Analysis of Economic Time Series, pages 33-56, National Bureau of Economic Research, Inc.
    11. Findley, David F, et al, 1998. "New Capabilities and Methods of the X-12-ARIMA Seasonal-Adjustment Program," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 127-152, April.
    12. Manski, Charles F., 2013. "Public Policy in an Uncertain World: Analysis and Decisions," Economics Books, Harvard University Press, number 9780674066892, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael Boldin & Jonathan H. Wright, 2015. "Weather-Adjusting Economic Data," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 46(2 (Fall)), pages 227-278.
    2. Philip J. Cook & Jens Ludwig, 2014. "Elusive Facts About Gun Violence: Where Good Surveys Go Bad," SADO - Working Papers 166, Small Arms Data Observatory.
    3. David J. Hand, 2018. "Statistical challenges of administrative and transaction data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(3), pages 555-605, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Charles F. Manski, 2015. "Communicating Uncertainty in Official Economic Statistics: An Appraisal Fifty Years after Morgenstern," Journal of Economic Literature, American Economic Association, vol. 53(3), pages 631-653, September.
    2. Manski, Charles F., 2016. "Credible interval estimates for official statistics with survey nonresponse," Journal of Econometrics, Elsevier, vol. 191(2), pages 293-301.
    3. Ho, Kate & Rosen, Adam M., 2015. "Partial Identification in Applied Research: Benefits and Challenges," CEPR Discussion Papers 10883, C.E.P.R. Discussion Papers.
    4. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    5. Vazquez-Alvarez, R. & Melenberg, B. & van Soest, A.H.O., 2001. "Nonparametric Bounds in the Presence of Item Nonresponse, Unfolding Brackets and Anchoring," Discussion Paper 2001-67, Tilburg University, Center for Economic Research.
    6. Bruno Arpino & Elisabetta De Cao & Franco Peracchi, 2011. "Using panel data to partially identify HIV prevalence when HIV status is not missing at random," EIEF Working Papers Series 1113, Einaudi Institute for Economics and Finance (EIEF), revised Aug 2011.
    7. Fan, Yanqin & Park, Sang Soo, 2014. "Nonparametric inference for counterfactual means: Bias-correction, confidence sets, and weak IV," Journal of Econometrics, Elsevier, vol. 178(P1), pages 45-56.
    8. Christelis, Dimitris & Messina, Julián, 2019. "Partial Identification of Population Average and Quantile Treatment Effects in Observational Data under Sample Selection," IDB Publications (Working Papers) 9520, Inter-American Development Bank.
    9. Nicoletti, Cheti & Peracchi, Franco & Foliano, Francesca, 2011. "Estimating Income Poverty in the Presence of Missing Data and Measurement Error," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 61-72.
    10. Michael Lechner & Blaise Melly, 2010. "Partial Idendification of Wage Effects of Training Programs," Working Papers 2010-8, Brown University, Department of Economics.
    11. Martin Huber & Giovanni Mellace, 2015. "Sharp Bounds on Causal Effects under Sample Selection," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 77(1), pages 129-151, February.
    12. Charles F. Manski, 2003. "Identification Problems in the Social Sciences and Everyday Life," Southern Economic Journal, John Wiley & Sons, vol. 70(1), pages 11-21, July.
    13. Martin Huber & Giovanni Mellace, 2010. "Sharp IV bounds on average treatment effects under endogeneity and noncompliance," University of St. Gallen Department of Economics working paper series 2010 2010-31, Department of Economics, University of St. Gallen.
    14. Steinmayr, Andreas, 2014. "When a random sample is not random: Bounds on the effect of migration on household members left behind," Kiel Working Papers 1975, Kiel Institute for the World Economy (IfW Kiel).
    15. German Blanco & Carlos A. Flores & Alfonso Flores-Lagunes, 2013. "Bounds on Average and Quantile Treatment Effects of Job Corps Training on Wages," Journal of Human Resources, University of Wisconsin Press, vol. 48(3), pages 659-701.
    16. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    17. Arie Beresteanu & Francesca Molinari, 2008. "Asymptotic Properties for a Class of Partially Identified Models," Econometrica, Econometric Society, vol. 76(4), pages 763-814, July.
    18. Dimitris Christelis & Dimitris Georgarakos & Tullio Jappelli & Geoff Kenny, 2020. "The Covid-19 Crisis and Consumption: Survey Evidence from Six EU Countries," Working Papers 2020_31, Business School - Economics, University of Glasgow.
    19. Carlos A. Medel, 2018. "A Comparison Between Direct and Indirect Seasonal Adjustment of the Chilean GDP 1986–2009 with X-12-ARIMA," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 14(1), pages 47-87, April.
    20. Claudia Olivetti & Barbara Petrongolo, 2008. "Unequal Pay or Unequal Employment? A Cross-Country Analysis of Gender Gaps," Journal of Labor Economics, University of Chicago Press, vol. 26(4), pages 621-654, October.

    More about this item

    JEL classification:

    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • E01 - Macroeconomics and Monetary Economics - - General - - - Measurement and Data on National Income and Product Accounts and Wealth; Environmental Accounts
    • I32 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - Measurement and Analysis of Poverty

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:20098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.