IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0115.html
   My bibliography  Save this paper

Instrumental Variables Estimation of Average Treatment Effects in Econometrics and Epidemiology

Author

Listed:
  • Joshua D. Angrist

Abstract

The average effect of intervention or treatment is a parameter of interest in both epidemiology and econometrics. A key difference between applications in the two fields is that epidemiologic research is more likely to involve qualitative outcomes and nonlinear models. An example is the recent use of the Vietnam era draft lottery to construct estimates of the effect of Vietnam era military service on civilian mortality. In this paper. I present necessary and sufficient conditions for linear instrumental variables. techniques to consistently estimate average treatment effects in qualitative or other nonlinear models. Most latent index models commonly applied to qualitative outcomes in econometrics fail to satisfy these conditions, and monte carlo evidence on the bias of instrumental estimates of the average treatment effect in a bivariate probit model is presented. The evidence suggests that linear instrumental variables estimators perform nearly as well as the correctly specified maximum likelihood estimator. especially in large samples. Linear instrumental variables and the normal maximum likelihood estimator are also remarkably robust to non-normality.

Suggested Citation

  • Joshua D. Angrist, 1991. "Instrumental Variables Estimation of Average Treatment Effects in Econometrics and Epidemiology," NBER Technical Working Papers 0115, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0115
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0115.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    2. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records," American Economic Review, American Economic Association, vol. 80(3), pages 313-336, June.
    3. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-499, March.
    4. Joshua Angrist & Alan Krueger, 1989. "Why Do World War II Veterans Earn More Than Nonveterans?," Working Papers 634, Princeton University, Department of Economics, Industrial Relations Section..
    5. Heckman, James J, 1978. "Dummy Endogenous Variables in a Simultaneous Equation System," Econometrica, Econometric Society, vol. 46(4), pages 931-959, July.
    6. Robert J. LaLonde, 1984. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," Working Papers 563, Princeton University, Department of Economics, Industrial Relations Section..
    7. Angrist, Joshua & Krueger, Alan B, 1994. "Why Do World War II Veterans Earn More Than Nonveterans?," Journal of Labor Economics, University of Chicago Press, vol. 12(1), pages 74-97, January.
    8. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    9. Angrist, Joshua D, 1990. "Lifetime Earnings and the Vietnam Era Draft Lottery: Evidence from Social Security Administrative Records: Errata," American Economic Review, American Economic Association, vol. 80(5), pages 1284-1286, December.
    10. Newey, Whitney K., 1986. "Linear instrumental variable estimation of limited dependent variable models with endogenous explanatory variables," Journal of Econometrics, Elsevier, vol. 32(1), pages 127-141, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens, 2010. "Better LATE Than Nothing: Some Comments on Deaton (2009) and Heckman and Urzua (2009)," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 399-423, June.
    2. James J. Heckman, 1995. "Instrumental Variables: A Cautionary Tale," NBER Technical Working Papers 0185, National Bureau of Economic Research, Inc.
    3. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    4. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    5. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    6. Angrist, Joshua & Krueger, Alan B, 1994. "Why Do World War II Veterans Earn More Than Nonveterans?," Journal of Labor Economics, University of Chicago Press, vol. 12(1), pages 74-97, January.
    7. Joshua D. Angrist & Jörn-Steffen Pischke, 2010. "The Credibility Revolution in Empirical Economics: How Better Research Design Is Taking the Con out of Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 24(2), pages 3-30, Spring.
    8. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. Guido W. Imbens, 2022. "Causality in Econometrics: Choice vs Chance," Econometrica, Econometric Society, vol. 90(6), pages 2541-2566, November.
    11. Bauer, Thomas K. & Bender, Stefan & Paloyo, Alfredo R. & Schmidt, Christoph M., 2012. "Evaluating the labor-market effects of compulsory military service," European Economic Review, Elsevier, vol. 56(4), pages 814-829.
    12. Angrist, J.D. & Imbens, G.W., 1991. "Sources of Identifying Information in Evaluation Models," Harvard Institute of Economic Research Working Papers 1568, Harvard - Institute of Economic Research.
    13. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    14. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    15. Rafael Di Tella & Ernesto Schargrodsky, 2004. "Do Police Reduce Crime? Estimates Using the Allocation of Police Forces After a Terrorist Attack," American Economic Review, American Economic Association, vol. 94(1), pages 115-133, March.
    16. Duflo, Esther & Glennerster, Rachel & Kremer, Michael, 2008. "Using Randomization in Development Economics Research: A Toolkit," Handbook of Development Economics, in: T. Paul Schultz & John A. Strauss (ed.), Handbook of Development Economics, edition 1, volume 4, chapter 61, pages 3895-3962, Elsevier.
    17. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    18. Deborah A. Cobb‐Clark & Thomas Crossley, 2003. "Econometrics for Evaluations: An Introduction to Recent Developments," The Economic Record, The Economic Society of Australia, vol. 79(247), pages 491-511, December.
    19. Kaitlin Anderson & Gema Zamarro & Jennifer Steele & Trey Miller, 2021. "Comparing Performance of Methods to Deal With Differential Attrition in Randomized Experimental Evaluations," Evaluation Review, , vol. 45(1-2), pages 70-104, February.
    20. van der Klaauw, Bas, 2014. "From micro data to causality: Forty years of empirical labor economics," Labour Economics, Elsevier, vol. 30(C), pages 88-97.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.