IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Expansion of Lévy Process Functionals and Its Application in Statistical Estimation

  • Chaohua Dong

    ()

  • Jiti Gao

    ()

Registered author(s):

In this paper, expansions of functionals of Lévy processes are established under some Hilbert spaces and their orthogonal bases. From practical standpoint, both time-homogeneous and time-inhomogeneous functionals of Lévy processes are considered. Several expansions and rates of convergence are established. In order to state asymptotic distributions for statistical estimators of unknown parameters involved in a general regression model, we develop a general asymptotic theory for partial sums of functionals of Lévy processes. The results show that these estimators of the unknown parameters in different situations converge to quite different random variables. In addition, the rates of convergence depend on various factors rather than just the sample size.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2012/wp2-12.pdf
Download Restriction: no

Paper provided by Monash University, Department of Econometrics and Business Statistics in its series Monash Econometrics and Business Statistics Working Papers with number 2/12.

as
in new window

Length: 89 pages
Date of creation: Jan 2012
Date of revision:
Handle: RePEc:msh:ebswps:2012-2
Contact details of provider: Postal: PO Box 11E, Monash University, Victoria 3800, Australia
Phone: +61-3-9905-2489
Fax: +61-3-9905-5474
Web page: http://www.buseco.monash.edu.au/depts/ebs/
Email:


More information through EDIRC

Order Information: Web: http://www.buseco.monash.edu.au/depts/ebs/pubs/wpapers/ Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Phillips, P. C. B., 1973. "The problem of identification in finite parameter continuous time models," Journal of Econometrics, Elsevier, vol. 1(4), pages 351-362, December.
  2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  3. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
  4. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
  5. Sydney Ludvigson & Xiaohong Chen, 2004. "Land of Addicts? An Empirical Investigation of Habit-Based Asset Pricing Models," 2004 Meeting Papers 692, Society for Economic Dynamics.
  6. Xiao, Zhijie, 2009. "Functional-coefficient cointegration models," Journal of Econometrics, Elsevier, vol. 152(2), pages 81-92, October.
  7. Cai, Zongwu & Li, Qi & Park, Joon Y., 2009. "Functional-coefficient models for nonstationary time series data," Journal of Econometrics, Elsevier, vol. 148(2), pages 101-113, February.
  8. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(03), pages 710-738, June.
  9. Peter C.B. Phillips, 2008. "Local Limit Theory and Spurious Nonparametric Regression," Cowles Foundation Discussion Papers 1654, Cowles Foundation for Research in Economics, Yale University.
  10. Hansen, Lars Peter & Sargent, Thomas J, 1983. "The Dimensionality of the Aliasing Problem in Models with Rational Spectral Densities," Econometrica, Econometric Society, vol. 51(2), pages 377-87, March.
  11. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
  12. Peter C.B. Phillips & Joon Y. Park, 1998. "Asymptotics for Nonlinear Transformations of Integrated Time Series," Cowles Foundation Discussion Papers 1182, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2012-2. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Grose)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.