IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2010-19.html
   My bibliography  Save this paper

Nonparametric modeling and forecasting electricity demand: an empirical study

Author

Listed:
  • Han Lin Shang

Abstract

This paper uses half-hourly electricity demand data in South Australia as an empirical study of nonparametric modeling and forecasting methods for prediction from half-hour ahead to one year ahead. A notable feature of the univariate time series of electricity demand is the presence of both intraweek and intraday seasonalities. An intraday seasonal cycle is apparent from the similarity of the demand from one day to the next, and an intraweek seasonal cycle is evident from comparing the demand on the corresponding day of adjacent weeks. There is a strong appeal in using forecasting methods that are able to capture both seasonalities. In this paper, the forecasting methods slice a seasonal univariate time series into a time series of curves. The forecasting methods reduce the dimensionality by applying functional principal component analysis to the observed data, and then utilize an univariate time series forecasting method and functional principal component regression techniques. When data points in the most recent curve are sequentially observed, updating methods can improve the point and interval forecast accuracy. We also revisit a nonparametric approach to construct prediction intervals of updated forecasts, and evaluate the interval forecast accuracy.

Suggested Citation

  • Han Lin Shang, 2010. "Nonparametric modeling and forecasting electricity demand: an empirical study," Monash Econometrics and Business Statistics Working Papers 19/10, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2010-19
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2010/wp19-10.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    2. Dauxois, J. & Pousse, A. & Romain, Y., 1982. "Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference," Journal of Multivariate Analysis, Elsevier, vol. 12(1), pages 136-154, March.
    3. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    4. Reiss, Philip T. & Ogden, R. Todd, 2007. "Functional Principal Component Regression and Functional Partial Least Squares," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 984-996, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    2. Lakraj, Gamage Pemantha & Ruymgaart, Frits, 2017. "Some asymptotic theory for Silverman’s smoothed functional principal components in an abstract Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 122-132.
    3. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    4. Chung Chang & Yakuan Chen & R. Ogden, 2014. "Functional data classification: a wavelet approach," Computational Statistics, Springer, vol. 29(6), pages 1497-1513, December.
    5. Christoph Hellmayr & Alan E. Gelfand, 2021. "A Partition Dirichlet Process Model for Functional Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 30-65, May.
    6. Boudou, Alain & Viguier-Pla, Sylvie, 2016. "Gap between orthogonal projectors—Application to stationary processes," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 282-300.
    7. Goldsmith, Jeff & Scheipl, Fabian, 2014. "Estimator selection and combination in scalar-on-function regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 362-372.
    8. Han Lin Shang, 2014. "Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(3), pages 599-615, September.
    9. Ana M. Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    10. Ana Aguilera, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 23-26, March.
    11. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    12. Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Silvia Novo & Germán Aneiros & Philippe Vieu, 2021. "Sparse semiparametric regression when predictors are mixture of functional and high-dimensional variables," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 481-504, June.
    14. van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    16. Ufuk Beyaztas & Han Lin Shang, 2021. "A partial least squares approach for function-on-function interaction regression," Computational Statistics, Springer, vol. 36(2), pages 911-939, June.
    17. Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de Estadística.
    18. Md Altab Hossin & Shuwen Xiong & David Alemzero & Hermas Abudu, 2023. "Analyzing the Progress of China and the World in Achieving Sustainable Development Goals 7 and 13," Sustainability, MDPI, vol. 15(19), pages 1-16, September.
    19. Eduardo L. Montoya & Wendy Meiring, 2016. "An F-type test for detecting departure from monotonicity in a functional linear model," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 28(2), pages 322-337, June.
    20. Xu Gao & Weining Shen & Liwen Zhang & Jianhua Hu & Norbert J. Fortin & Ron D. Frostig & Hernando Ombao, 2021. "Regularized matrix data clustering and its application to image analysis," Biometrics, The International Biometric Society, vol. 77(3), pages 890-902, September.

    More about this item

    Keywords

    Functional principal component analysis; functional time series; multivariate time series; ordinary least squares; penalized least squares; ridge regression; seasonal time series;
    All these keywords.

    JEL classification:

    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.