IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Clusterização Hierárquica Espacial

Listed author(s):
  • Alexandre Xavier Ywata Carvalho
  • Pedro Henrique Melo Albuquerque
  • Gilberto Rezende de Almeida Junior
  • Rafael Dantas Guimarães
Registered author(s):

    Este estudo apresenta uma nova metodologia para clusterização hierárquica espacial de polígonos contíguos, com base em um sistema de coordenadas georreferenciadas. O algoritmo proposto é construído a partir de uma modificação do algoritmo de clusterização hierárquica tradicional, comumente utilizado na literatura de análise multivariada. De acordo com o método proposto neste trabalho, a cada passo do processo sequencial de junção de clusters, impõe-se que somente conglomerados (grupos de polígonos originais, como municípios, estados ou setores censitários) vizinhos possam ser unidos para formar um novo cluster maior. Neste caso, foram definidos como vizinhos polígonos que possuem um vértice em comum (vizinhança do tipo queen) ou uma aresta em comum (vizinhança do tipo rook). O estudo apresenta aplicações da nova metodologia para clusterização dos municípios brasileiros, no ano de 2000, com base em um conjunto de variáveis socioeconômicas. Diversos métodos de clusterização são estudados, assim como diferentes tipos de distâncias entre vetores. Os métodos estudados foram: centroid, single linkage, complete linkage, average linkage e average linkage weighted, Ward`s minimum variance e método da mediana. As distâncias utilizadas foram: norma Lp (em particular, as normas L1 e L2), Mahalanobis e distância euclidiana corrigida pela variância (variance corrected) - caso particular da distância de Mahalanobis. Finalmente, apresenta-se uma discussão sobre alguns métodos comumente utilizados para seleção do número de clusters. This paper presents a new methodology for hierarchical spatial clustering of contiguous polygons, based on a geographic coordinate system. The proposed algorithm is built upon a modification of traditional hierarchical clustering algorithm, commonly used in the multivariate analysis literature. According to the proposed method in this paper, at each step of the sequential process of collapsing clusters, only neighbor clusters (groups of original polygons, i.e. municipalities, census tracts, states) are allowed to be collapsed to form a bigger cluster. Two types of neighborhood are used: polygons with one edge in common (rook neighborhood) or polygons with only one point in common (queen neighborhood). In this paper, the methodology is employed to create clusters of Brazilian municipalities, for the year 2000, based on a group of socio-economic variables. Several clustering methods are investigated, as well as several types of vector distances. The studied methods were: centroid method, single linkage, complete linkage, average linkage, average linkage weighted, Ward minimum variance e median method. The studied distances were: Lp norm (particularly, L1 e L2 norms), Mahalanobis distance and variance corrected Euclidian distance. Finally, a discussion on selection of the number of clusters is presented.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Instituto de Pesquisa Econômica Aplicada - IPEA in its series Discussion Papers with number 1427.

    in new window

    Length: 79 pages
    Date of creation: Oct 2009
    Handle: RePEc:ipe:ipetds:1427
    Contact details of provider: Postal:
    SBS - Quadra 01 - Bloco J - Ed. BNDES, Brasília, DF - 70076-90

    Phone: +55(061)315-5000
    Fax: +55(61)321-1597
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Chomitz, Kenneth M. & da Mata, Daniel & de Carvalho, Alexandre Ywata & Magalhaes, Joao Carlos, 2005. "Spatial dynamics of labor markets in Brazil," Policy Research Working Paper Series 3752, The World Bank.
    2. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    3. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    4. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters,in: Credit and State Theories of Money, chapter 1 Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1427. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Fabio Schiavinatto)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.