IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

A discreet approach to study the distribution-free downward biases of Gini coefficient and the methods of correction in cases of small observations

Listed author(s):
  • Amlan Majumder


    (Dinhata College, West Bengal, India)

  • Takayoshi Kusago

    (Kansai University, Osaka, Japan)

Registered author(s):

    It is well-known that Gini coefficient is influenced by granularity of measurements. When there are few observations only or when they get reduced due to grouping, standard measures exhibit a non-negligible downward bias. At times, bias may be positive when there is an apparent reduction in sample size. Although authors agreed on distribution-free and distribution-specific parts of it, there is no consensus in regard to types of bias, their magnitude and the methods of correction in the former. This paper deals with the distribution-free downward biases only, which arise in two forms. One is related to scale and occurs in all the cases stated above, when number of observations is small. Both occur together if initial number of observations is not sufficiently large and further they get reduced due to grouping. Underestimations associated with the former is demonstrated and addressed, for discontinuous case, through alternative formulation with simplicity following the principle of mean difference without repetition. Equivalences of it are also derived under the geometric and covariance approaches. However, when it arises with the other, a straightforward claim of it in its full magnitude may be unwarranted and quite paradoxical. Some exercises are done consequently to make Gini coefficient standardized and comparable for a fixed number of observations. Corrections in case of the latter are done accordingly with a newly proposed operational pursuit synchronizing the relevant previous and present concerns. The paper concludes after addressing some definitional issues in regard to convention and adjustments in cases of small observations.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by ECINEQ, Society for the Study of Economic Inequality in its series Working Papers with number 298.

    in new window

    Length: 30 pages
    Date of creation: Aug 2013
    Handle: RePEc:inq:inqwps:ecineq2013-298
    Contact details of provider: Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Milanovic, Branko, 1997. "A simple way to calculate the Gini coefficient, and some implications," Economics Letters, Elsevier, vol. 56(1), pages 45-49, September.
    2. Branko Milanovic, 2012. "Global inequality recalculated and updated: the effect of new PPP estimates on global inequality and 2005 estimates," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 10(1), pages 1-18, March.
    3. Lerman, Robert I. & Yitzhaki, Shlomo, 1989. "Improving the accuracy of estimates of Gini coefficients," Journal of Econometrics, Elsevier, vol. 42(1), pages 43-47, September.
    4. Branko Milanovic, 1994. "The Gini-Type Functions: An Alternative Derivation," Bulletin of Economic Research, Wiley Blackwell, vol. 46(1), pages 81-90, January.
    5. Sen, Amartya, 1997. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198292975.
    6. Graham Pyatt & Chau-nan Chen & John Fei, 1980. "The Distribution of Income by Factor Components," The Quarterly Journal of Economics, Oxford University Press, vol. 95(3), pages 451-473.
    7. George Deltas, 2003. "The Small-Sample Bias of the Gini Coefficient: Results and Implications for Empirical Research," The Review of Economics and Statistics, MIT Press, vol. 85(1), pages 226-234, February.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inq:inqwps:ecineq2013-298. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Maria Ana Lugo)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.