IDEAS home Printed from https://ideas.repec.org/p/ime/imedps/19-e-01.html
   My bibliography  Save this paper

Wrong-way Risk in Credit Valuation Adjustment of Credit Default Swap with Copulas

Author

Listed:
  • Tetsuya Adachi

    (Economist, Institute for Monetary and Economic Studies, Bank of Japan (currently, PwC Consulting LLC, E-mail: tetsuya. adachi@pwc.com))

  • Takumi Sueshige

    (Senior, EY Shinnihon LLC (currently, School of Computing, Tokyo Institute of Technology, E-mail: sueshige.t.aa@m.titech.ac.jp))

  • Toshinao Yoshiba

    (Director and Senior Economist, Institute for Monetary and Economic Studies (currently, Financial System and Bank Examination Department), Bank of Japan (E-mail: toshinao.yoshiba@boj.or.jp))

Abstract

We compare several wrong-way risk models for the credit valuation adjustment of a credit default swap under a copula approach with stochastic default intensities. We show that the tail dependent copulas well capture the wrong-way risk for the credit valuation adjustment. To that end, we employ an affine jump diffusion process for the default intensity to derive the distribution function of the cumulative intensity, based on the copula approach. To reduce computing time, we propose an approximation method using the fractional fast Fourier transform and numerical integration to the characteristic function of the cumulative intensity.

Suggested Citation

  • Tetsuya Adachi & Takumi Sueshige & Toshinao Yoshiba, 2019. "Wrong-way Risk in Credit Valuation Adjustment of Credit Default Swap with Copulas," IMES Discussion Paper Series 19-E-01, Institute for Monetary and Economic Studies, Bank of Japan.
  • Handle: RePEc:ime:imedps:19-e-01
    as

    Download full text from publisher

    File URL: https://www.imes.boj.or.jp/research/papers/english/19-E-01.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lijun Bo & Agostino Capponi, 2014. "Bilateral credit valuation adjustment for large credit derivatives portfolios," Finance and Stochastics, Springer, vol. 18(2), pages 431-482, April.
    2. Robert A. Jarrow & David Lando & Fan Yu, 2008. "Default Risk And Diversification: Theory And Empirical Implications," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 19, pages 455-480, World Scientific Publishing Co. Pte. Ltd..
    3. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    4. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    5. Tetsuya Adachi & Yoshihiko Uchida, 2015. "Variation of Wrong-Way Risk Management and Its Impact on Security Price Changes," IMES Discussion Paper Series 15-E-11, Institute for Monetary and Economic Studies, Bank of Japan.
    6. Roger Lord, 2010. "Comment on: A Note on the Discontinuity Problem in Heston's Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 373-376.
    7. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    8. Damiano Brigo & Kyriakos Chourdakis, 2009. "Counterparty Risk For Credit Default Swaps: Impact Of Spread Volatility And Default Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(07), pages 1007-1026.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    2. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    3. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    4. Cheikh Mbaye & Frédéric Vrins, 2022. "Affine term structure models: A time‐change approach with perfect fit to market curves," Mathematical Finance, Wiley Blackwell, vol. 32(2), pages 678-724, April.
    5. Corsaro, Stefania & Kyriakou, Ioannis & Marazzina, Daniele & Marino, Zelda, 2019. "A general framework for pricing Asian options under stochastic volatility on parallel architectures," European Journal of Operational Research, Elsevier, vol. 272(3), pages 1082-1095.
    6. Boes, Mark-Jan & Drost, Feike C. & Werker, Bas J. M., 2007. "The Impact of Overnight Periods on Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(2), pages 517-533, June.
    7. Badescu, Alexandru M. & Kulperger, Reg J., 2008. "GARCH option pricing: A semiparametric approach," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 69-84, August.
    8. Li, Hongshan & Huang, Zhongyi, 2020. "An iterative splitting method for pricing European options under the Heston model☆," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    9. Hongshan Li & Zhongyi Huang, 2020. "An iterative splitting method for pricing European options under the Heston model," Papers 2003.12934, arXiv.org.
    10. Paola Zerilli, 2005. "Option pricing and spikes in volatility: theoretical and empirical analysis," Money Macro and Finance (MMF) Research Group Conference 2005 76, Money Macro and Finance Research Group.
    11. Ajay Khanna & Dilip Madan, 2004. "Understanding option prices," Quantitative Finance, Taylor & Francis Journals, vol. 4(1), pages 55-63.
    12. Kaeck, Andreas & Rodrigues, Paulo & Seeger, Norman J., 2018. "Model Complexity and Out-of-Sample Performance: Evidence from S&P 500 Index Returns," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 1-29.
    13. Kallsen, Jan & Muhle-Karbe, Johannes, 2010. "Exponentially affine martingales, affine measure changes and exponential moments of affine processes," Stochastic Processes and their Applications, Elsevier, vol. 120(2), pages 163-181, February.
    14. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    15. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    16. Winston Buckley & Sandun Perera, 2019. "Optimal demand in a mispriced asymmetric Carr–Geman–Madan–Yor (CGMY) economy," Annals of Finance, Springer, vol. 15(3), pages 337-368, September.
    17. David S. Bates, 2009. "U.S. Stock Market Crash Risk, 1926-2006," NBER Working Papers 14913, National Bureau of Economic Research, Inc.
    18. Akira Yamazaki, 2014. "Pricing average options under time-changed Lévy processes," Review of Derivatives Research, Springer, vol. 17(1), pages 79-111, April.
    19. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    20. Lindström, Erik & Ströjby, Jonas & Brodén, Mats & Wiktorsson, Magnus & Holst, Jan, 2008. "Sequential calibration of options," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2877-2891, February.

    More about this item

    Keywords

    Credit valuation adjustment; Credit default swap; Affine jump diffusion; Fractional fast Fourier transform; Characteristic function;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ime:imedps:19-e-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kinken (email available below). General contact details of provider: https://edirc.repec.org/data/imegvjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.