IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/1-2005.html
   My bibliography  Save this paper

A note on stochastic survival probabilities and their calibration

Author

Listed:
  • Elisa Luciano

    ()

  • Elena Vigna

    ()

Abstract

In this note we use doubly stochastic processes (or Cox processes) in order to model the evolution of the stochastic force of mortality of an individual aged x. These processes have been widely used in the credit risk literature in modelling the default arrival, and in this context have proved to be quite flexible and useful. We investigate the applicability of these processes in describing the individual's mortality, and provide a calibration to the Italian case. Results from the calibration are twofold. Firstly, the stochastic intensities seem to better capture the development of medicine and long term care which is under our daily observation. Secondly, when pricing insurance products such as life annuities, we observe a remarkable premium increase, although the expected residual lifetime is essentially unchanged.

Suggested Citation

  • Elisa Luciano & Elena Vigna, 2005. "A note on stochastic survival probabilities and their calibration," ICER Working Papers - Applied Mathematics Series 1-2005, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:1-2005
    as

    Download full text from publisher

    File URL: http://www.biblioecon.unito.it/biblioservizi/RePEc/icr/wp2005/ICERwp1-05.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Manatunga, Amita K. & Oakes, David, 1996. "A Measure of Association for Bivariate Frailty Distributions," Journal of Multivariate Analysis, Elsevier, vol. 56(1), pages 60-74, January.
    2. Paolo Ghirardato & Massimo Marinacci, 2001. "Risk, Ambiguity, and the Separation of Utility and Beliefs," Mathematics of Operations Research, INFORMS, vol. 26(4), pages 864-890, November.
    3. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Artzner, Philippe & Delbaen, Freddy, 1992. "Credit Risk and Prepayment Option," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 22(01), pages 81-96, May.
    6. Domenico Menicucci, 2003. "Optimal two-object auctions with synergies," Review of Economic Design, Springer;Society for Economic Design, vol. 8(2), pages 143-164, October.
    7. Elisa Luciano & Elena Vigna, 2005. "Non mean reverting affine processes for stochastic mortality," ICER Working Papers - Applied Mathematics Series 4-2005, ICER - International Centre for Economic Research.
    8. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    9. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gourieroux, C. & Monfort, A., 2008. "Quadratic stochastic intensity and prospective mortality tables," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 174-184, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:1-2005. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Simone Pellegrino). General contact details of provider: http://edirc.repec.org/data/icerrit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.