IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2016-012.html
   My bibliography  Save this paper

Neighborhood Effects in Wind Farm Performance: An Econometric Approach

Author

Listed:
  • Matthias Ritter
  • Simone Pieralli
  • HMartin Odening

Abstract

The optimization of turbine density in wind farms entails a trade-off between the usage of scarce, expensive land and power losses through turbine wake effects. A quantification and prediction of the wake effect, however, is challenging because of the complex aerodynamic nature of the interdependencies of turbines. In this paper, we propose a parsimonious data driven econometric wake model that can be used to predict production losses of existing and potential wind parks. Motivated by simple engineering wake models, the predicting variables are wind speed, turbine alignment angle, and distance. By utilizing data from two wind parks in Germany, a significantly better prediction of wake effect losses is attained compared to the standard Jensen model. A scenario analysis reveals that a distance between turbines can be reduced up to three times the rotor size without entailing substantial production losses. In contrast, a suboptimal configuration of turbines with respect to the main wind direction can result in production losses that are five times higher.

Suggested Citation

  • Matthias Ritter & Simone Pieralli & HMartin Odening, 2016. "Neighborhood Effects in Wind Farm Performance: An Econometric Approach," SFB 649 Discussion Papers SFB649DP2016-012, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2016-012
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2016-012.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Marmidis, Grigorios & Lazarou, Stavros & Pyrgioti, Eleftheria, 2008. "Optimal placement of wind turbines in a wind park using Monte Carlo simulation," Renewable Energy, Elsevier, vol. 33(7), pages 1455-1460.
    2. Pieralli, Simone & Ritter, Matthias & Odening, Martin, 2015. "Efficiency of wind power production and its determinants," Energy, Elsevier, vol. 90(P1), pages 429-438.
    3. Kiranoudis, C.T. & Maroulis, Z.B., 1997. "Effective short-cut modelling of wind park efficiency," Renewable Energy, Elsevier, vol. 11(4), pages 439-457.
    4. Wan, Chunqiu & Wang, Jun & Yang, Geng & Gu, Huajie & Zhang, Xing, 2012. "Wind farm micro-siting by Gaussian particle swarm optimization with local search strategy," Renewable Energy, Elsevier, vol. 48(C), pages 276-286.
    5. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    6. Turner, S.D.O. & Romero, D.A. & Zhang, P.Y. & Amon, C.H. & Chan, T.C.Y., 2014. "A new mathematical programming approach to optimize wind farm layouts," Renewable Energy, Elsevier, vol. 63(C), pages 674-680.
    7. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    8. Barthelmie, R.J. & Pryor, S.C., 2013. "An overview of data for wake model evaluation in the Virtual Wakes Laboratory," Applied Energy, Elsevier, vol. 104(C), pages 834-844.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Wind energy; wake modeling; wind farm designmultiplesystem approach; dual-self model; drift–diffusion model; response times;

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2016-012. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.