IDEAS home Printed from
   My bibliography  Save this paper

Mean Volatility Regressions


  • Lu Lin
  • Feng Li
  • Lixing Zhu
  • Wolfgang Karl Härdle


Motivated by increment process modeling for two correlated random and non-random systems from a discrete-time asset pricing with both risk free asset and risky security, we propose a class of semiparametric regressions for a combination of a non-random and a random system. Unlike classical regressions, mean regression functions in the new model contain variance components and the model variables are related to latent variables, for which certain economic interpretation can be made. The motivating example explains why the GARCH-M of which the mean function contains a variance component cannot cover the newly proposed models. Further, we show that statistical inference for the increment process cannot be simply dealt with by a two-step procedure working separately on the two involved systems although the increment process is a weighted sum of the two systems. We further investigate the asymptotic behaviors of estimation by using sophisticated nonparametric smoothing. Monte Carlo simulations are conducted to examine finite-sample performance, and a real dataset published in Almanac of China’s Finance and Banking (2004 and 2005) is analyzed for illustration about the increment process of wealth in financial market of China from 2003 to 2004.

Suggested Citation

  • Lu Lin & Feng Li & Lixing Zhu & Wolfgang Karl Härdle, 2011. "Mean Volatility Regressions," SFB 649 Discussion Papers SFB649DP2011-003, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2011-003

    Download full text from publisher

    File URL:
    Download Restriction: no

    More about this item


    Non-random systems; Random systems; Semiparametric regression; Variance built-in Mean;

    JEL classification:

    • C00 - Mathematical and Quantitative Methods - - General - - - General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • J01 - Labor and Demographic Economics - - General - - - Labor Economics: General
    • J31 - Labor and Demographic Economics - - Wages, Compensation, and Labor Costs - - - Wage Level and Structure; Wage Differentials


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2011-003. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.