IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2009-032.html
   My bibliography  Save this paper

Weather-based estimation of wildfire risk

Author

Listed:
  • Joanne Ho
  • Martin Odening

Abstract

Catastrophic wildfires in California have become more frequent in past decades, while insured losses per event have been rising substantially. On average, California ranks the highest among states in the U.S. in the number of fires as well as the number of acres burned each year. The study of catastrophic wildfire models plays an important role in the prevention and mitigation of such disasters. Accurate forecasts of potential large fires assist fire managers in preparing resources and strategic planning for fire suppression. Furthermore, fire forecasting can a priori inform insurers on potential financial losses due to large fires. This paper describes a probabilistic model for predicting wildland fire risks using the two-stage Heckman procedure. Using 37 years of spatial and temporal information on weather and fire records in Southern California, this model measures the probability of a fire occurring and estimates the expected size of the fire on a given day and location, offering a technique to predict and forecast wildfire occurrences based on weather information that is readily available at low cost.

Suggested Citation

  • Joanne Ho & Martin Odening, 2009. "Weather-based estimation of wildfire risk," SFB 649 Discussion Papers SFB649DP2009-032, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2009-032
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2009-032.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Wolfgang Karl Härdle & Brenda López Cabrera, 2010. "Calibrating CAT Bonds for Mexican Earthquakes," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 77(3), pages 625-650.
    2. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 31(3), pages 129-137.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roland Strausz, 2009. "The Political Economy of Regulatory Risk," SFB 649 Discussion Papers SFB649DP2009-040, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    2. Michał Grajek & Lars-Hendrik Röller, 2012. "Regulation and Investment in Network Industries: Evidence from European Telecoms," Journal of Law and Economics, University of Chicago Press, vol. 55(1), pages 189-216.
    3. Barbara Choroś & Wolfgang Härdle & Ostap Okhrin, 2009. "CDO and HAC," SFB 649 Discussion Papers SFB649DP2009-038, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Maria Grith & Wolfgang Härdle & Juhyun Park, 2009. "Shape invariant modelling pricing kernels and risk aversion," SFB 649 Discussion Papers SFB649DP2009-041, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.

    More about this item

    Keywords

    biased sampling; forest fires; fire occurrence probabilities; fire weather;

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2009-032. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.