IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2006-029.html
   My bibliography  Save this paper

Tail Conditional Expectation for vector-valued Risks

Author

Listed:
  • Imen Bentahar

Abstract

In his paper we introduce a quantile-based risk measure for multivariate financial positions "the vector-valued Tail-conditional-expectation (TCE)". We adopt the framework proposed by Jouini, Meddeb, and Touzi [9] to deal with multi-assets portfolios when one accounts for frictions in the financial market. In this framework, the space of risks formed by essentially bounded random vectors, is endowed with some partial vector preorder >= accounting for market frictions. In a first step we provide a definition for quantiles of vector-valued risks which is compatible with the preorder >=. The TCE is then introduced as a natural extension of the "classical" real-valued tail-conditional-expectation. Our main result states that for continuous distributions TCE is equal to a coherent vector-valued risk measure. We also provide a numerical algorithm for computing vector-valued quantiles and TCE.

Suggested Citation

  • Imen Bentahar, 2006. "Tail Conditional Expectation for vector-valued Risks," SFB 649 Discussion Papers SFB649DP2006-029, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2006-029
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2006-029.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    2. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    3. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    4. Philippe Artzner & Freddy Delbaen & Jean-Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228.
    5. Stefan Jaschke & Uwe Küchler, 2001. "Coherent risk measures and good-deal bounds," Finance and Stochastics, Springer, vol. 5(2), pages 181-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Areski Cousin & Elena Di Bernadino, 2011. "On Multivariate Extensions of Value-at-Risk," Papers 1111.1349, arXiv.org, revised Apr 2013.
    2. Areski Cousin & Elena Di Bernadino, 2013. "On Multivariate Extensions of Value-at-Risk," Working Papers hal-00638382, HAL.
    3. Zachary Feinstein & Birgit Rudloff, 2013. "A comparison of techniques for dynamic multivariate risk measures," Papers 1305.2151, arXiv.org, revised Jan 2015.

    More about this item

    Keywords

    Risk measures; vector-valued risk measures; coherent risk-measures; quantiles; tail-conditional-expectation;

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2006-029. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.