IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v13y2011i4d10.1007_s11009-010-9183-x.html
   My bibliography  Save this article

Tail Risk of Multivariate Regular Variation

Author

Listed:
  • Harry Joe

    (University of British Columbia)

  • Haijun Li

    (Washington State University)

Abstract

Tail risk refers to the risk associated with extreme values and is often affected by extremal dependence among multivariate extremes. Multivariate tail risk, as measured by a coherent risk measure of tail conditional expectation, is analyzed for multivariate regularly varying distributions. Asymptotic expressions for tail risk are established in terms of the intensity measure that characterizes multivariate regular variation. Tractable bounds for tail risk are derived in terms of the tail dependence function that describes extremal dependence. Various examples involving Archimedean copulas are presented to illustrate the results and quality of the bounds.

Suggested Citation

  • Harry Joe & Haijun Li, 2011. "Tail Risk of Multivariate Regular Variation," Methodology and Computing in Applied Probability, Springer, vol. 13(4), pages 671-693, December.
  • Handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9183-x
    DOI: 10.1007/s11009-010-9183-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11009-010-9183-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11009-010-9183-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Zinoviy Landsman & Emiliano Valdez, 2003. "Tail Conditional Expectations for Elliptical Distributions," North American Actuarial Journal, Taylor & Francis Journals, vol. 7(4), pages 55-71.
    2. Stan Alink & Matthias Löwe & Mario V. Wüthrich, 2007. "Diversification for general copula dependence," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 61(4), pages 446-465, November.
    3. Joe, Harry & Li, Haijun & Nikoloulopoulos, Aristidis K., 2010. "Tail dependence functions and vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 101(1), pages 252-270, January.
    4. Alink, Stan & Löwe, Matthias & Wüthrich, Mario V., 2005. "Analysis of the Expected Shortfall of Aggregate Dependent Risks," ASTIN Bulletin, Cambridge University Press, vol. 35(1), pages 25-43, May.
    5. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    6. Kousky, Carolyn & Cooke, Roger, 2009. "Climate Change and Risk Management: Challenges for Insurance, Adaptation, and Loss Estimation," RFF Working Paper Series dp-09-03-rev, Resources for the Future.
    7. repec:dau:papers:123456789/353 is not listed on IDEAS
    8. Cheridito, Patrick & Delbaen, Freddy & Kupper, Michael, 2004. "Coherent and convex monetary risk measures for bounded càdlàg processes," Stochastic Processes and their Applications, Elsevier, vol. 112(1), pages 1-22, July.
    9. Alink, Stan & Lowe, Matthias & V. Wuthrich, Mario, 2004. "Diversification of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 77-95, August.
    10. Joe, Harry & Hu, Taizhong, 1996. "Multivariate Distributions from Mixtures of Max-Infinitely Divisible Distributions," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 240-265, May.
    11. Elyés Jouini & Moncef Meddeb & Nizar Touzi, 2004. "Vector-valued coherent risk measures," Finance and Stochastics, Springer, vol. 8(4), pages 531-552, November.
    12. Embrechts, Paul & Neslehová, Johanna & Wüthrich, Mario V., 2009. "Additivity properties for Value-at-Risk under Archimedean dependence and heavy-tailedness," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 164-169, April.
    13. Li, Haijun, 2009. "Orthant tail dependence of multivariate extreme value distributions," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 243-256, January.
    14. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    15. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
    2. Yanhong Chen & Zachary Feinstein, 2022. "Set-valued dynamic risk measures for processes and for vectors," Finance and Stochastics, Springer, vol. 26(3), pages 505-533, July.
    3. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    4. Bentahar, Imen, 2006. "Tail Conditional Expectation for vector-valued risks," SFB 649 Discussion Papers 2006-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    5. Nakano Yumiharu, 2006. "Mean-risk optimization for index tracking," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-19, July.
    6. Andreas H Hamel, 2018. "Monetary Measures of Risk," Papers 1812.04354, arXiv.org.
    7. Chen, Die & Mao, Tiantian & Pan, Xiaoqing & Hu, Taizhong, 2012. "Extreme value behavior of aggregate dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 99-108.
    8. Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
    9. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2019. "Dynamic risk measures for processes via backward stochastic differential equations," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 43-50.
    10. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    11. Giovanni Paolo Crespi & Elisa Mastrogiacomo, 2020. "Qualitative robustness of set-valued value-at-risk," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(1), pages 25-54, February.
    12. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    13. Coqueret, Guillaume, 2014. "Second order risk aggregation with the Bernstein copula," Insurance: Mathematics and Economics, Elsevier, vol. 58(C), pages 150-158.
    14. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    15. Balbás, Alejandro & Balbás, Raquel & Mayoral, Silvia, 2006. "Optimizing Measures of Risk: A Simplex-like Algorithm," DEE - Working Papers. Business Economics. WB 6534, Universidad Carlos III de Madrid. Departamento de Economía de la Empresa.
    16. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    17. Andreas H. Hamel & Frank Heyde, 2021. "Set-Valued T -Translative Functions and Their Applications in Finance," Mathematics, MDPI, vol. 9(18), pages 1-33, September.
    18. Elisa Mastrogiacomo & Emanuela Rosazza Gianin, 2019. "Time-consistency of risk measures: how strong is such a property?," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 287-317, June.
    19. Chuancun Yin & Dan Zhu, 2015. "New class of distortion risk measures and their tail asymptotics with emphasis on VaR," Papers 1503.08586, arXiv.org, revised Mar 2016.
    20. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:13:y:2011:i:4:d:10.1007_s11009-010-9183-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.