My bibliography
Save this item
Tail Risk of Multivariate Regular Variation
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Cai, J., 2012. "Estimation concerning risk under extreme value conditions," Other publications TiSEM a92b089f-bc4c-41c2-b297-c, Tilburg University, School of Economics and Management.
- Li, Haijun & Hua, Lei, 2015. "Higher order tail densities of copulas and hidden regular variation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 143-155.
- Wang, Bingjie & Li, Jinzhu, 2024. "Asymptotic results on tail moment for light-tailed risks," Insurance: Mathematics and Economics, Elsevier, vol. 114(C), pages 43-55.
- Li, Jinzhu, 2022. "Asymptotic results on marginal expected shortfalls for dependent risks," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 146-168.
- Das, Bikramjit & Fasen-Hartmann, Vicky, 2024. "On heavy-tailed risks under Gaussian copula: The effects of marginal transformation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).
- Asimit, Alexandru V. & Furman, Edward & Tang, Qihe & Vernic, Raluca, 2011. "Asymptotics for risk capital allocations based on Conditional Tail Expectation," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 310-324.
- Juan-Juan Cai & John H. J. Einmahl & Laurens Haan & Chen Zhou, 2015.
"Estimation of the marginal expected shortfall: the mean when a related variable is extreme,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 417-442, March.
- Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2012. "Estimation of the Marginal Expected Shortfall : The Mean when a Related Variable is Extreme," Other publications TiSEM e96e039f-cb6b-4cd5-805b-5, Tilburg University, School of Economics and Management.
- Cai, J. & Einmahl, J.H.J. & de Haan, L.F.M. & Zhou, C., 2012. "Estimation of the Marginal Expected Shortfall : The Mean when a Related Variable is Extreme," Discussion Paper 2012-080, Tilburg University, Center for Economic Research.
- Bikramjit Das & Vicky Fasen-Hartmann, 2023. "On heavy-tailed risks under Gaussian copula: the effects of marginal transformation," Papers 2304.05004, arXiv.org.
- Li, Jinzhu, 2016. "Uniform asymptotics for a multi-dimensional time-dependent risk model with multivariate regularly varying claims and stochastic return," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 195-204.
- Das, Bikramjit & Fasen-Hartmann, Vicky, 2018. "Risk contagion under regular variation and asymptotic tail independence," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 194-215.
- Bernard, Carole & Czado, Claudia, 2015. "Conditional quantiles and tail dependence," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 104-126.
- Li, Yizhou & Polak, Paweł, 2025. "Asymptotic normality of the Conditional Value-at-Risk based Pickands estimator," Statistics & Probability Letters, Elsevier, vol. 223(C).
- Li, Haijun & Wu, Peiling, 2013. "Extremal dependence of copulas: A tail density approach," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 99-111.
- Das Bikramjit & Fasen-Hartmann Vicky, 2019. "Conditional excess risk measures and multivariate regular variation," Statistics & Risk Modeling, De Gruyter, vol. 36(1-4), pages 1-23, December.
- Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Discussion Paper 2023-001, Tilburg University, Center for Economic Research.
- Haijun Li, 2018. "Operator Tail Dependence of Copulas," Methodology and Computing in Applied Probability, Springer, vol. 20(3), pages 1013-1027, September.
- Hansjörg Albrecher & Martin Bladt & Mogens Bladt, 2021. "Multivariate matrix Mittag–Leffler distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 369-394, April.
- Hua, Lei & Joe, Harry, 2011. "Second order regular variation and conditional tail expectation of multiple risks," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 537-546.
- Joe, Harry & Li, Haijun, 2019. "Tail densities of skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 421-435.
- Jaunė, Eglė & Šiaulys, Jonas, 2022. "Asymptotic risk decomposition for regularly varying distributions with tail dependence," Applied Mathematics and Computation, Elsevier, vol. 427(C).
- Konstantinides, Dimitrios G. & Li, Jinzhu, 2016. "Asymptotic ruin probabilities for a multidimensional renewal risk model with multivariate regularly varying claims," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 38-44.
- Einmahl, John & Krajina, Andrea, 2023. "Empirical Likelihood Based Testing for Multivariate Regular Variation," Other publications TiSEM 261583f5-c571-48c6-8cea-9, Tilburg University, School of Economics and Management.
- Haijun Li & Susan Xu & Way Kuo, 2014. "Asymptotic analysis of simultaneous damages in spatial Boolean models," Annals of Operations Research, Springer, vol. 212(1), pages 139-154, January.
- Asimit, Alexandru V. & Li, Jinzhu, 2016. "Extremes for coherent risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 332-341.
- Xu, Maochao & Mao, Tiantian, 2013. "Optimal capital allocation based on the Tail Mean–Variance model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 533-543.
- Bikramjit Das & Vicky Fasen, 2016. "Risk contagion under regular variation and asymptotic tail independence," Papers 1603.09406, arXiv.org, revised Apr 2017.