IDEAS home Printed from https://ideas.repec.org/p/hum/wpaper/sfb649dp2005-007.html
   My bibliography  Save this paper

Implied Trinomial Trees

Author

Listed:
  • Pavel Cizek
  • Karel Komorad

Abstract

No abstract is available for this item.

Suggested Citation

  • Pavel Cizek & Karel Komorad, 2005. "Implied Trinomial Trees," SFB 649 Discussion Papers SFB649DP2005-007, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2005-007
    as

    Download full text from publisher

    File URL: http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2005-007.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Ying Chen & Wolfgang Härdle & Seok-Oh Jeong, 2004. "Nonparametric Risk Management with Generalized Hyperbolic Distributions," SFB 649 Discussion Papers SFB649DP2005-001, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany, revised Aug 2005.
    2. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    3. Hull, John & White, Alan, 1990. "Valuing Derivative Securities Using the Explicit Finite Difference Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 25(01), pages 87-100, March.
    4. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Michal Benko & Alois Kneip, 2005. "Common functional component modelling," SFB 649 Discussion Papers SFB649DP2005-016, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    7. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    option pricing; Black-Scholes formula; binomial trees; implied trinomial trees; implied Volatility; German Stock Index; DAX;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2005-007. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: http://edirc.repec.org/data/sohubde.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.