IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/73sti2017.html
   My bibliography  Save this paper

Roadmaps as a Tool for Modeling Complex Systems

Author

Listed:
  • Lyubov Y. Matich

    (National Research University Higher School of Economics)

Abstract

Today roadmaps are becoming commonly used tool for detecting and designing a desired future for companies, states and the international community. The growing popularity of this method puts tasks such as identifying basic roadmapping principles, creation of concepts and determination of the characteristics of the use of roadmaps depending on the objectives as well as restrictions and opportunities specific to the study area on the agenda. However the system approach, e.g. the elements which are recognized to be major for high-quality roadmapping, remain one of the main fields for improving the methodology and practice of their development as limited research was devoted to the detailed analysis of the roadmaps from the view of system approach. System analysis can make the process of roadmap development easier because it identifies six key stages, the implementation of which is necessary for the construction of any roadmap. Two case studies undertaken in the paper demonstrate the implementation of system approach for roadmap creation in the Russian companies and industries

Suggested Citation

  • Lyubov Y. Matich, 2017. "Roadmaps as a Tool for Modeling Complex Systems," HSE Working papers WP BRP 73/STI/2017, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:73sti2017
    as

    Download full text from publisher

    File URL: https://wp.hse.ru/data/2017/03/09/1169505428/73STI2017.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Härdle, Wolfgang Karl & Wang, Weining & Yu, Lining, 2016. "TENET: Tail-Event driven NETwork risk," Journal of Econometrics, Elsevier, vol. 192(2), pages 499-513.
    2. Ronald N. Kostoff, 2001. "The metrics of science and technology," Scientometrics, Springer;Akadémiai Kiadó, vol. 50(2), pages 353-361, February.
    3. Peat, Maurice & Svec, Jiri & Wang, Jue, 2014. "Reporting bias in incomplete information model," Economics Letters, Elsevier, vol. 123(1), pages 45-49.
    4. Martin, Hilary & Daim, Tugrul U., 2012. "Technology roadmap development process (TRDP) for the service sector: A conceptual framework," Technology in Society, Elsevier, vol. 34(1), pages 94-105.
    5. Hai Lu & Jiaquan Yang & Kari Alanne, 2018. "Energy Quality Management for a Micro Energy Network Integrated with Renewables in a Tourist Area: A Chinese Case Study," Energies, MDPI, vol. 11(4), pages 1-24, April.
    6. Vishnevskiy, Konstantin & Karasev, Oleg & Meissner, Dirk, 2016. "Integrated roadmaps for strategic management and planning," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 153-166.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daim, Tugrul U. & Yoon, Byung-Sung & Lindenberg, John & Grizzi, Robert & Estep, Judith & Oliver, Terry, 2018. "Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment," Technological Forecasting and Social Change, Elsevier, vol. 131(C), pages 49-66.
    2. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    3. Spaniol, Matthew J. & Rowland, Nicholas J., 2022. "Business ecosystems and the view from the future: The use of corporate foresight by stakeholders of the Ro-Ro shipping ecosystem in the Baltic Sea Region," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
    4. Ouyang, Zisheng & Zhou, Xuewei & Wang, Gang-jin & Liu, Shuwen & Lu, Min, 2024. "Multilayer networks in the frequency domain: Measuring volatility connectedness among Chinese financial institutions," International Review of Economics & Finance, Elsevier, vol. 92(C), pages 909-928.
    5. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    6. repec:hum:wpaper:sfb649dp2016-047 is not listed on IDEAS
    7. Ouyang, Zisheng & Zhou, Xuewei & Lu, Min & Liu, Ke, 2024. "Imported financial risk in global stock markets: Evidence from the interconnected network," Research in International Business and Finance, Elsevier, vol. 69(C).
    8. Xu, Qiuhua & Zhang, Yixuan & Zhang, Ziyang, 2021. "Tail-risk spillovers in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 38(C).
    9. Addi, Abdelhamid & Bouoiyour, Jamal, 2023. "Interconnectedness and extreme risk: Evidence from dual banking systems," Economic Modelling, Elsevier, vol. 120(C).
    10. Chen, Wei & Hou, Xiaoli & Jiang, Manrui & Jiang, Cheng, 2022. "Identifying systemically important financial institutions in complex network: A case study of Chinese stock market," Emerging Markets Review, Elsevier, vol. 50(C).
    11. Ahmad, Wasim & Tiwari, Shiv Ratan & Wadhwani, Akshay & Khan, Mohammad Azeem & Bekiros, Stelios, 2023. "Financial networks and systemic risk vulnerabilities: A tale of Indian banks," Research in International Business and Finance, Elsevier, vol. 65(C).
    12. Chen, Bin-xia & Sun, Yan-lin, 2024. "Financial market connectedness between the U.S. and China: A new perspective based on non-linear causality networks," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    13. Ren, Yinghua & Tan, Anqi & Zhu, Huiming & Zhao, Wanru, 2022. "Does economic policy uncertainty drive nonlinear risk spillover in the commodity futures market?," International Review of Financial Analysis, Elsevier, vol. 81(C).
    14. Li, Xinjue & Zboňáková, Lenka & Wang, Weining & Härdle, Wolfgang Karl, 2019. "Combining Penalization and Adaption in High Dimension with Application in Bond Risk Premia Forecasting," IRTG 1792 Discussion Papers 2019-030, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    15. Naeem, Muhammad Abubakr & Karim, Sitara & Tiwari, Aviral Kumar, 2022. "Quantifying systemic risk in US industries using neural network quantile regression," Research in International Business and Finance, Elsevier, vol. 61(C).
    16. Yang, Xin & Wen, Shigang & Zhao, Xian & Huang, Chuangxia, 2020. "Systemic importance of financial institutions: A complex network perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Zhang, Weiping & Zhuang, Xintian & Wang, Jian & Lu, Yang, 2020. "Connectedness and systemic risk spillovers analysis of Chinese sectors based on tail risk network," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    18. Dai, Zhifeng & Tang, Rui & Zhang, Xiaotong, 2023. "A new multilayer network for measuring interconnectedness among the energy firms," Energy Economics, Elsevier, vol. 124(C).
    19. Wang, Gang-Jin & Chen, Yang-Yang & Si, Hui-Bin & Xie, Chi & Chevallier, Julien, 2021. "Multilayer information spillover networks analysis of China’s financial institutions based on variance decompositions," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 325-347.
    20. Cerqueti, Roy & Ciciretti, Rocco & Dalò, Ambrogio & Nicolosi, Marco, 2022. "A new measure of the resilience for networks of funds with applications to socially responsible investments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    21. Daniel Felix Ahelegbey & Paolo Giudici, 2020. "Market Risk, Connectedness and Turbulence: A Comparison of 21st Century Financial Crises," DEM Working Papers Series 188, University of Pavia, Department of Economics and Management.

    More about this item

    Keywords

    technology roadmap; roadmapping; systems analysis; system modeling;
    All these keywords.

    JEL classification:

    • O21 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Planning Models; Planning Policy
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O32 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Management of Technological Innovation and R&D

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:73sti2017. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.