IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On the Estimation of Skewed Geometric Stable Distributions

Listed author(s):
Registered author(s):

    The increasing interest in the application of geometric stable distributions has lead to a need for appropriate estimators. Building on recent procedures for estimating the Linnik distribution, this paper develops two estimators for the geometric stable distribution. Closed form expressions are provided for the signed and unsigned fractional moments of the distribution. The estimators are then derived using the methods of fractional lower order moments and that of logarithmic moments. Their performance is tested on simulated data, where the lower order estimators, in particular, are found to give efficient results over most of the parameter space.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by The Ratio Institute in its series Ratio Working Papers with number 216.

    in new window

    Length: 19 pages
    Date of creation: 21 Aug 2013
    Handle: RePEc:hhs:ratioi:0216
    Contact details of provider: Postal:
    The Ratio Institute, P.O. Box 5095, SE-102 42 Stockholm, Sweden

    Phone: 08-441 59 00
    Fax: 08-441 59 29
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Manas, Arnaud, 2012. "The Laplace illusion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 3963-3970.
    2. Devroye, Luc, 1990. "A note on linnik's distribution," Statistics & Probability Letters, Elsevier, vol. 9(4), pages 305-306, April.
    3. V. Lekshmi & K. Jose, 2004. "An autoregressive process with geometric α-laplace marginals," Statistical Papers, Springer, vol. 45(3), pages 337-350, July.
    4. Anderson, Dale N., 1992. "A multivariate Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 14(4), pages 333-336, July.
    5. repec:nys:sunysb:93-02 is not listed on IDEAS
    6. Kotz, Samuel & Ostrovskii, I. V., 1996. "A mixture representation of the Linnik distribution," Statistics & Probability Letters, Elsevier, vol. 26(1), pages 61-64, January.
    7. Dexter Cahoy, 2012. "An estimation procedure for the Linnik distribution," Statistical Papers, Springer, vol. 53(3), pages 617-628, August.
    8. Pakes, Anthony G., 1998. "Mixture representations for symmetric generalized Linnik laws," Statistics & Probability Letters, Elsevier, vol. 37(3), pages 213-221, March.
    9. Kozubowski, Tomasz J. & Rachev, Svetlozar T., 1994. "The theory of geometric stable distributions and its use in modeling financial data," European Journal of Operational Research, Elsevier, vol. 74(2), pages 310-324, April.
    10. Jose, K.K. & Tomy, Lishamol & Sreekumar, J., 2008. "Autoregressive processes with normal-Laplace marginals," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2456-2462, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hhs:ratioi:0216. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Martin Korpi)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.