IDEAS home Printed from
   My bibliography  Save this paper

Modelling Economic Relationships with Smooth Transition Regressions


  • Teräsvirta, Timo

    () (Department of Economic Statistics)


This paper has been prepared for Handbook of Applied Economic Statistics, edited by David Giles and Aman Ullah. It considers a particular class of single-equation nonlinear multivariate models called smooth transition regression (STR) models. Inference in these models, including testing linearity against STR and testing Granger noncausality, is discussed. A modelling cycle, consisting of the specification, estimation, and evaluation of these models is presented and its different stages considered in detail. Model encompassing also receives attention. Furthermore, the chapter contains a previously unpublished empirical application of the STR model to modelling UK housing price expectations. This example illustrates the workings of the modelling cycle and possible usefulness of the STR model in dynamic macroeconomic modelling.

Suggested Citation

  • Teräsvirta, Timo, 1996. "Modelling Economic Relationships with Smooth Transition Regressions," SSE/EFI Working Paper Series in Economics and Finance 131, Stockholm School of Economics.
  • Handle: RePEc:hhs:hastef:0131

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    References listed on IDEAS

    1. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    2. Sichel, Daniel E, 1993. "Business Cycle Asymmetry: A Deeper Look," Economic Inquiry, Western Economic Association International, vol. 31(2), pages 224-236, April.
    3. Eitrheim, Oyvind & Terasvirta, Timo, 1996. "Testing the adequacy of smooth transition autoregressive models," Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
    4. Bell, David & Kay, Jim & Malley, Jim, 1996. "A non-parametric approach to non-linear causality testing," Economics Letters, Elsevier, vol. 51(1), pages 7-18, April.
    5. Zivot, Eric & Andrews, Donald W K, 2002. "Further Evidence on the Great Crash, the Oil-Price Shock, and the Unit-Root Hypothesis," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 25-44, January.
    6. Perron, Pierre, 1989. "The Great Crash, the Oil Price Shock, and the Unit Root Hypothesis," Econometrica, Econometric Society, vol. 57(6), pages 1361-1401, November.
    7. Stock, James H., 1987. "Measuring Business Cycle Time," Scholarly Articles 3425950, Harvard University Department of Economics.
    8. Balke, Nathan S & Fomby, Thomas B, 1994. "Large Shocks, Small Shocks, and Economic Fluctuations: Outliers in Macroeconomic Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 9(2), pages 181-200, April-Jun.
    9. Raj, Baldev, 1992. "International Evidence on Persistence in Output in the Presence of an Episodic Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(3), pages 281-293, July-Sept.
    10. Wesley Clair Mitchell, 1927. "Business Cycles: The Problem and Its Setting," NBER Books, National Bureau of Economic Research, Inc, number mitc27-1, January.
    11. Geweke, John, 1984. "Inference and causality in economic time series models," Handbook of Econometrics,in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 19, pages 1101-1144 Elsevier.
    12. Stock, James H, 1987. "Measuring Business Cycle Time," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1240-1261, December.
    13. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    14. John Hassler & Petter Lundvik & Torsten Persson & Paul Soderlind, 1992. "The Swedish business cycle: stylized facts over 130 years," Discussion Paper / Institute for Empirical Macroeconomics 63, Federal Reserve Bank of Minneapolis.
    15. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    16. Hiemstra, Craig & Jones, Jonathan D, 1994. " Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    17. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    18. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    19. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Bergeaud, A. & Cette, G. & Lecat, R., 2015. "Productivity trends from 1890 to 2012 in advanced countries," Rue de la Banque, Banque de France, issue 07, June..

    More about this item


    Causality; econometric modelling; linearity test; misspecification test; nonlinear model; structural change;

    JEL classification:

    • C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:hastef:0131. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Helena Lundin). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.