IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the Voting Power of an Alliance and the Subsequent Power of its Members

  • Vincent Merlin

    ()

    (CREM - Centre de Recherche en Economie et Management - CNRS : UMR6211 - Université de Rennes I - Université de Caen)

  • Marc Feix

    (MAPMO - Mathématiques et Applications, Physique Mathématique d'Orléans - CNRS : UMR6628 - Université d'Orléans)

  • Dominique Lepelley

    (CREM - Centre de Recherche en Economie et Management - CNRS : UMR6211 - Université de Rennes I - Université de Caen, CERESUR - Centre d'Etudes et de Recherches Economique et Sociales de l'Université de La Réunion - Université de la Réunion)

  • Jean-Louis Rouet

    (MAPMO - Mathématiques et Applications, Physique Mathématique d'Orléans - CNRS : UMR6628 - Université d'Orléans)

Even, and in fact chiefly, if two or more players in a voting gamehave on a binary issue independent opinions, they may haveinterest to form a single voting alliance giving an average gainof influence for all of them. Here, assuming the usualindependence of votes, we first study the alliance voting powerand obtain new results in the so-called asymptotic limit for whichthe number of players is large enough and the alliance weightremains a small fraction of the total of the weights. Then, wepropose to replace the voting game inside the alliance by a randomgame which allows new possibilities. The validity of theasymptotic limit and the possibility of new alliances are examinedby considering the decision process in the Council of Ministers ofthe European Union.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://halshs.archives-ouvertes.fr/docs/00/06/55/84/PDF/Alliance10.pdf
Download Restriction: no

Paper provided by HAL in its series Post-Print with number halshs-00010168.

as
in new window

Length:
Date of creation: 2007
Date of revision:
Publication status: Published, Social Choice and Welfare, 2007, 28, 2, 181--207
Handle: RePEc:hal:journl:halshs-00010168
Note: View the original document on HAL open archive server: http://halshs.archives-ouvertes.fr/halshs-00010168/en/
Contact details of provider: Web page: http://hal.archives-ouvertes.fr/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lindner, Ines & Machover, Moshe, 2004. "L.S. Penrose's limit theorem: proof of some special cases," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 37-49, January.
  2. Guillermo Owen, 1972. "Multilinear Extensions of Games," Management Science, INFORMS, vol. 18(5-Part-2), pages 64-79, January.
  3. Moshé Machover & Dan S. Felsenthal, 2001. "The Treaty of Nice and qualified majority voting," Social Choice and Welfare, Springer, vol. 18(3), pages 431-464.
  4. Dan S. Felsenthal & Moshé Machover, 2002. "Annexations and alliances: When are blocs advantageous a priori?," Social Choice and Welfare, Springer, vol. 19(2), pages 295-312, April.
  5. Dennis Leech, 2003. "Computing Power Indices for Large Voting Games," Management Science, INFORMS, vol. 49(6), pages 831-837, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00010168. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.