IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04937317.html
   My bibliography  Save this paper

White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting

Author

Listed:
  • Hossein Hassani
  • Leila Marvian Mashhad
  • Manuela Royer-Carenzi

    (I2M - Institut de Mathématiques de Marseille - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

  • Mohammad Reza Yeganegi
  • Nadejda Komendantova

Abstract

This paper contributes significantly to time series analysis by discussing the empirical properties of white noise and their implications for model selection. This paper illustrates the ways in which the standard assumptions about white noise typically fail in practice, with a special emphasis on striking differences in sample ACF and PACF. Such findings prove particularly important when assessing model adequacy and discerning between residuals of different models, especially ARMA processes. This study addresses issues involving testing procedures, for instance, the Ljung–Box test, to select the correct time series model determined in the review. With the improvement in understanding the features of white noise, this work enhances the accuracy of modeling diagnostics toward real forecasting practice, which gives it applied value in time series analysis and signal processing.

Suggested Citation

  • Hossein Hassani & Leila Marvian Mashhad & Manuela Royer-Carenzi & Mohammad Reza Yeganegi & Nadejda Komendantova, 2025. "White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting," Post-Print hal-04937317, HAL.
  • Handle: RePEc:hal:journl:hal-04937317
    DOI: 10.3390/forecast7010008
    Note: View the original document on HAL open archive server: https://hal.science/hal-04937317v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04937317v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/forecast7010008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kirman Alan & Teyssière Gilles, 2002. "Microeconomic Models for Long Memory in the Volatility of Financial Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 5(4), pages 1-23, January.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Hossein Hassani & Emmanuel Sirimal Silva, 2015. "A Kolmogorov-Smirnov Based Test for Comparing the Predictive Accuracy of Two Sets of Forecasts," Econometrics, MDPI, vol. 3(3), pages 1-20, August.
    4. Hassani, Hossein & Yeganegi, Mohammad Reza, 2020. "Selecting optimal lag order in Ljung–Box test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Hassani & Leila Marvian Mashhad & Manuela Royer-Carenzi & Mohammad Reza Yeganegi & Nadejda Komendantova, 2025. "White Noise and Its Misapplications: Impacts on Time Series Model Adequacy and Forecasting," Forecasting, MDPI, vol. 7(1), pages 1-14, February.
    2. Manuela Royer-Carenzi & Hossein Hassani, 2025. "Deviations from Normality in Autocorrelation Functions and Their Implications for MA(q) Modeling," Stats, MDPI, vol. 8(1), pages 1-37, February.
    3. Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018. "Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
    4. Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).
    5. Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
    6. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
    7. Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
    8. Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
    9. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    10. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    11. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    12. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    13. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    14. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    15. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    16. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    17. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    18. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    19. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    20. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04937317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.