IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04085236.html
   My bibliography  Save this paper

High-Dimensional Radial Symmetry of Copula Functions: Multiplier Bootstrap vs. Randomization

Author

Listed:
  • Monica Billio

    (University of Ca’ Foscari [Venice, Italy])

  • Lorenzo Frattarolo

    (JRC - European Commission - Joint Research Centre [Ispra])

  • Dominique Guégan

    (University of Ca’ Foscari [Venice, Italy], CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, UP1 - Université Paris 1 Panthéon-Sorbonne)

Abstract

We use a recently proposed fast test of copula radial symmetry based on multiplier bootstrap and obtain an equivalent randomization test. The literature shows the statistical superiority of the randomization approach in the bivariate case. We extend the comparison of statistical performance focusing on the high-dimensional regime in a simulation study. We document radial asymmetry in the joint distribution of the percentage changes of sectorial industrial production indices of the European Union.

Suggested Citation

  • Monica Billio & Lorenzo Frattarolo & Dominique Guégan, 2022. "High-Dimensional Radial Symmetry of Copula Functions: Multiplier Bootstrap vs. Randomization," Post-Print hal-04085236, HAL.
  • Handle: RePEc:hal:journl:hal-04085236
    DOI: 10.3390/sym14010097
    Note: View the original document on HAL open archive server: https://hal.science/hal-04085236
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04085236/document
    Download Restriction: no

    File URL: https://libkey.io/10.3390/sym14010097?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    2. Andrew J. Patton, 2004. "On the Out-of-Sample Importance of Skewness and Asymmetric Dependence for Asset Allocation," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 130-168.
    3. Azam Dehgani & Ali Dolati & Manuel Úbeda-Flores, 2013. "Measures of radial asymmetry for bivariate random vectors," Statistical Papers, Springer, vol. 54(2), pages 271-286, May.
    4. Bo Li & Marc G. Genton, 2013. "Nonparametric Identification of Copula Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 666-675, June.
    5. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    6. Segers, Johan, 2012. "Asymptotics of empirical copula processes under non-restrictive smoothness assumptions," LIDAM Reprints ISBA 2012009, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    7. François Longin & Bruno Solnik, 2001. "Extreme Correlation of International Equity Markets," Journal of Finance, American Finance Association, vol. 56(2), pages 649-676, April.
    8. Ang, Andrew & Chen, Joseph, 2002. "Asymmetric correlations of equity portfolios," Journal of Financial Economics, Elsevier, vol. 63(3), pages 443-494, March.
    9. Billio, Monica & Pelizzon, Loriana, 2003. "Contagion and interdependence in stock markets: Have they been misdiagnosed?," Journal of Economics and Business, Elsevier, vol. 55(5-6), pages 405-426.
    10. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    11. Bücher, Axel & Volgushev, Stanislav, 2013. "Empirical and sequential empirical copula processes under serial dependence," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 61-70.
    12. J. Rosco & Harry Joe, 2013. "Measures of tail asymmetry for bivariate copulas," Statistical Papers, Springer, vol. 54(3), pages 709-726, August.
    13. Bücher, Axel & Jäschke, Stefan & Wied, Dominik, 2015. "Nonparametric tests for constant tail dependence with an application to energy and finance," Journal of Econometrics, Elsevier, vol. 187(1), pages 154-168.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Billio Monica & Frattarolo Lorenzo & Guégan Dominique, 2021. "Multivariate radial symmetry of copula functions: finite sample comparison in the i.i.d case," Dependence Modeling, De Gruyter, vol. 9(1), pages 43-61, January.
    2. Beare, Brendan K. & Seo, Juwon, 2020. "Randomization Tests Of Copula Symmetry," Econometric Theory, Cambridge University Press, vol. 36(6), pages 1025-1063, December.
    3. Juwon Seo, 2018. "Randomization Tests for Equality in Dependence Structure," Papers 1811.02105, arXiv.org.
    4. Shogo Kato & Toshinao Yoshiba & Shinto Eguchi, 2022. "Copula-based measures of asymmetry between the lower and upper tail probabilities," Statistical Papers, Springer, vol. 63(6), pages 1907-1929, December.
    5. Monica Billio & Lorenzo Frattarolo & Dominique Guegan, 2017. "Multivariate Reflection Symmetry of Copula Functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01592147, HAL.
    6. Pavel Krupskii, 2017. "Copula-based measures of reflection and permutation asymmetry and statistical tests," Statistical Papers, Springer, vol. 58(4), pages 1165-1187, December.
    7. Roman Matkovskyy, 2019. "Extremal Economic (Inter)Dependence Studies: A Case of the Eastern European Countries," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(3), pages 667-698, September.
    8. Aleksy Leeuwenkamp & Wentao Hu, 2023. "New general dependence measures: construction, estimation and application to high-frequency stock returns," Papers 2309.00025, arXiv.org.
    9. Tarik Bahraoui & Nikolai Kolev, 2021. "New Measure of the Bivariate Asymmetry," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(1), pages 421-448, February.
    10. Rand Kwong Yew Low, 2018. "Vine copulas: modelling systemic risk and enhancing higher‐moment portfolio optimisation," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 58(S1), pages 423-463, November.
    11. David E. Allen & Abhay K. Singh & Robert J. Powell & Michael McAleer & James Taylor & Lyn Thomas, 2013. "Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression," Tinbergen Institute Discussion Papers 13-020/III, Tinbergen Institute.
    12. Agbeyegbe, Terence D., 2015. "An inverted U-shaped crude oil price return-implied volatility relationship," Review of Financial Economics, Elsevier, vol. 27(C), pages 28-45.
    13. Dimic, Nebojsa & Piljak, Vanja & Swinkels, Laurens & Vulanovic, Milos, 2021. "The structure and degree of dependence in government bond markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 74(C).
    14. Meng-Jou Lu & Cathy Yi-Hsuan Chen & Wolfgang Karl Härdle, 2017. "Copula-based factor model for credit risk analysis," Review of Quantitative Finance and Accounting, Springer, vol. 49(4), pages 949-971, November.
    15. Niţoi, Mihai & Pochea, Maria Miruna, 2020. "Time-varying dependence in European equity markets: A contagion and investor sentiment driven analysis," Economic Modelling, Elsevier, vol. 86(C), pages 133-147.
    16. Christian Genest & Johanna Nešlehová, 2014. "On tests of radial symmetry for bivariate copulas," Statistical Papers, Springer, vol. 55(4), pages 1107-1119, November.
    17. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    18. Campbell, Rachel A.J. & Forbes, Catherine S. & Koedijk, Kees G. & Kofman, Paul, 2008. "Increasing correlations or just fat tails?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 287-309, March.
    19. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    20. Aslanidis, Nektarios & Dungey, Mardi & Savva, Christos S., 2008. "Progress Towards to Equity Market Integration in Eastern Europe," Working Papers 2072/13265, Universitat Rovira i Virgili, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04085236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.