IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01877042.html
   My bibliography  Save this paper

Autonomous vehicles: scientometric and bibliometric review

Author

Listed:
  • Rodrigo Marçal Gandia

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras)

  • Fabio Antonialli

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras, LGI - Laboratoire Génie Industriel - EA 2606 - CentraleSupélec)

  • Bruna Habib Cavazza

    (LGI - Laboratoire Génie Industriel - EA 2606 - CentraleSupélec, UFLA - Universidade Federal de Lavras = Federal University of Lavras)

  • Arthur Miranda Neto

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras)

  • Danilo Alves De Lima

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras)

  • Joel Yutaka Sugano

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras)

  • Isabelle Nicolaï

    (REEDS - Centre international de Recherches en Economie écologique, Eco-innovation et ingénierie du Développement Soutenable - UVSQ - Université de Versailles Saint-Quentin-en-Yvelines, LGI - Laboratoire Génie Industriel - EA 2606 - CentraleSupélec)

  • André Luiz Zambalde

    (UFLA - Universidade Federal de Lavras = Federal University of Lavras)

Abstract

This paper presents a scientometric and bibliometric review of the research on autonomous vehicles (AVs) to identify its main characteristics, evolution, and potential trends for future studies. Relevant articles were searched on WoS, yielding a research corpus of 10,580 papers, and the software CiteSpace was subsequently used for analysis. The results showed that AV research is heterogeneous and registered a growing demand over time. Multidisciplinarity is present, with 96 science fields being identified. As in any other sector, it is necessary to understand broader aspects of this industry such as the market factors surrounding it, as well as other economic and managerial issues. In this sense, we observed a migration of the research field from multidisciplinarity to pluridisciplinarity with a greater number of studies focusing on the latter. We understand that terminology standardisation contributes to achieving pluridisciplinarity. As such, it is important to highlight that sustainability, public policies, liability, and safety, as well as business issues such as performance and business models are some of the tendencies in the field of AVs. For future studies, we suggest a more in-depth analysis of publications in terms of individual search terms, as well as the sub-areas identified as trends in this paper.

Suggested Citation

  • Rodrigo Marçal Gandia & Fabio Antonialli & Bruna Habib Cavazza & Arthur Miranda Neto & Danilo Alves De Lima & Joel Yutaka Sugano & Isabelle Nicolaï & André Luiz Zambalde, 2019. "Autonomous vehicles: scientometric and bibliometric review," Post-Print hal-01877042, HAL.
  • Handle: RePEc:hal:journl:hal-01877042
    DOI: 10.1080/01441647.2018.1518937
    Note: View the original document on HAL open archive server: https://centralesupelec.hal.science/hal-01877042
    as

    Download full text from publisher

    File URL: https://centralesupelec.hal.science/hal-01877042/document
    Download Restriction: no

    File URL: https://libkey.io/10.1080/01441647.2018.1518937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruna Habib Cavazza & Rodrigo Marçal Gandia & Fabio Antonialli & André Luiz Zambalde & Isabelle Nicolaï & Joel Yutaka Sugano & Arthur De Miranda Neto, 2019. "Management and business of autonomous vehicles: a systematic integrative bibliographic review," International Journal of Automotive Technology and Management, Inderscience Enterprises Ltd, vol. 19(1/2), pages 31-54.
    2. Yun, JinHyo Joseph & Won, DongKyu & Jeong, EuiSeob & Park, KyungBae & Yang, JeongHo & Park, JiYoung, 2016. "The relationship between technology, business model, and market in autonomous car and intelligent robot industries," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 142-155.
    3. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    4. Jean-Benoît Zimmermann, 1995. "Le concept de grappes technologiques. Un cadre formel," Revue Économique, Programme National Persée, vol. 46(5), pages 1263-1295.
    5. Lutz Bornmann & Rüdiger Mutz, 2015. "Growth rates of modern science: A bibliometric analysis based on the number of publications and cited references," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(11), pages 2215-2222, November.
    6. Chaomei Chen & Fidelia Ibekwe-SanJuan & Jianhua Hou, 2010. "The structure and dynamics of cocitation clusters: A multiple-perspective cocitation analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 61(7), pages 1386-1409, July.
    7. Chaomei Chen & Loet Leydesdorff, 2014. "Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(2), pages 334-351, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    2. Jiao Zhang & Qian Wang & Yiping Xia & Katsunori Furuya, 2022. "Knowledge Map of Spatial Planning and Sustainable Development: A Visual Analysis Using CiteSpace," Land, MDPI, vol. 11(3), pages 1-24, February.
    3. Fabio Antonialli, 2019. "International benchmark on experimentations with Autonomous Shuttles for Collective Transport," Post-Print hal-02489797, HAL.
    4. Muhammad Azam & Sitti Asmah Hassan & Othman Che Puan, 2022. "Autonomous Vehicles in Mixed Traffic Conditions—A Bibliometric Analysis," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    5. Fabio Antonialli & Bruna Habib Cavazza & Rodrigo Gandia & Isabelle Nicolaï & Arthur de Miranda Neto & Joel Sugano & André Luiz Zambalde, 2020. "Human or machine driving? Comparing autonomous with traditional vehicles value curves and motives to use a car," Post-Print halshs-03687616, HAL.
    6. Raj, Alok & Kumar, J. Ajith & Bansal, Prateek, 2020. "A multicriteria decision making approach to study barriers to the adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 122-137.
    7. Shuang Kan & Wei Lyu & Shiyu Zhao, 2022. "Evaluation of the Environmental Effect of Automated Vehicles Based on IVIULWG Operator Development," Sustainability, MDPI, vol. 14(15), pages 1-14, August.
    8. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    9. Kroesen, Maarten & Milakis, Dimitris & van Wee, Bert, 2023. "Automated Vehicles: Changes in expert opinions over time," Transport Policy, Elsevier, vol. 136(C), pages 1-10.
    10. Alberto Dianin & Elisa Ravazzoli & Georg Hauger, 2021. "Implications of Autonomous Vehicles for Accessibility and Transport Equity: A Framework Based on Literature," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    11. Pan, Yuchen & Wu, Yu & Xu, Lu & Xia, Chengyi & Olson, David L., 2024. "The impacts of connected autonomous vehicles on mixed traffic flow: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    12. Olugbenga Oladinrin & Kasun Gomis & Wadu Mesthrige Jayantha & Lovelin Obi & Muhammad Qasim Rana, 2021. "Scientometric Analysis of Global Scientific Literature on Aging in Place," IJERPH, MDPI, vol. 18(23), pages 1-16, November.
    13. Amalia Polydoropoulou & Ioannis Tsouros & Nikolas Thomopoulos & Cristina Pronello & Arnór Elvarsson & Haraldur Sigþórsson & Nima Dadashzadeh & Kristina Stojmenova & Jaka Sodnik & Stelios Neophytou & D, 2021. "Who Is Willing to Share Their AV? Insights about Gender Differences among Seven Countries," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    14. Tianlong Yu & Hao Yang & Xiaowei Luo & Yifeng Jiang & Xiang Wu & Jingqi Gao, 2021. "Scientometric Analysis of Disaster Risk Perception: 2000–2020," IJERPH, MDPI, vol. 18(24), pages 1-19, December.
    15. Fabio Antonialli & Danielle Attias, 2019. "Social and economic impacts of Autonomous Shuttles for Collective Transport: an in- depth benchmark study," Post-Print hal-02489808, HAL.
    16. Huang, Lei & Ladikas, Miltos & Schippl, Jens & He, Guangxi & Hahn, Julia, 2023. "Knowledge mapping of an artificial intelligence application scenario: A bibliometric analysis of the basic research of data-driven autonomous vehicles," Technology in Society, Elsevier, vol. 75(C).
    17. Du, Manqing & Zhang, Tingru & Liu, Jinting & Xu, Zhigang & Liu, Peng, 2022. "Rumors in the air? Exploring public misconceptions about automated vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 156(C), pages 237-252.
    18. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    19. Ishant Sharma & Sabyasachee Mishra, 2023. "Ranking preferences towards adopting autonomous vehicles based on peer inputs and advertisements," Transportation, Springer, vol. 50(6), pages 2139-2192, December.
    20. Cohen, Tom & Jones, Peter, 2020. "Technological advances relevant to transport – understanding what drives them," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 80-95.
    21. Maria Cieśla & Aleksander Sobota & Marianna Jacyna, 2020. "Multi-Criteria Decision Making Process in Metropolitan Transport Means Selection Based on the Sharing Mobility Idea," Sustainability, MDPI, vol. 12(17), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo Marçal Gandia & Fabio Antonialli & Bruna Habib & Arthur De Miranda Neto & Danilo Alves de Lima & Joel Yutaka & André Luiz & Isabelle Nicolaï, 2017. "Autonomous vehicles: Scientometric and bibliometric studies," Post-Print hal-01652939, HAL.
    2. Andrej Kastrin & Dimitar Hristovski, 2021. "Scientometric analysis and knowledge mapping of literature-based discovery (1986–2020)," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(2), pages 1415-1451, February.
    3. Carlos Olmeda-Gómez & Carlos Romá-Mateo & Maria-Antonia Ovalle-Perandones, 2019. "Overview of trends in global epigenetic research (2009–2017)," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1545-1574, June.
    4. Zongmin Li & Shuyan Xu & Liming Yao, 2018. "A Systematic Literature Mining of Sponge City: Trends, Foci and Challenges Standing Ahead," Sustainability, MDPI, vol. 10(4), pages 1-19, April.
    5. Keng Yang & Hanying Qi, 2022. "Research on Health Disparities Related to the COVID-19 Pandemic: A Bibliometric Analysis," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    6. Jianhua Hou & Xiucai Yang & Chaomei Chen, 2018. "Emerging trends and new developments in information science: a document co-citation analysis (2009–2016)," Scientometrics, Springer;Akadémiai Kiadó, vol. 115(2), pages 869-892, May.
    7. Meen Chul Kim & Yongjun Zhu & Chaomei Chen, 2016. "How are they different? A quantitative domain comparison of information visualization and data visualization (2000–2014)," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(1), pages 123-165, April.
    8. Liang Zhou & Lin Zhang & Ying Zhao & Ruoshu Zheng & Kaiwen Song, 2021. "A scientometric review of blockchain research," Information Systems and e-Business Management, Springer, vol. 19(3), pages 757-787, September.
    9. Gisleine Carmo & Luiz Flávio Felizardo & Valderí Castro Alcântara & Cristiane Aparecida Silva & José Willer Prado, 2023. "The impact of Jürgen Habermas’s scientific production: a scientometric review," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(3), pages 1853-1875, March.
    10. Tong Chen & Mo Wang & Jin Su & Jianjun Li, 2023. "Unlocking the Positive Impact of Bio-Swales on Hydrology, Water Quality, and Biodiversity: A Bibliometric Review," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    11. Hailiang Li & M. James C. Crabbe & Haikui Chen, 2020. "History and Trends in Ecological Stoichiometry Research from 1992 to 2019: A Scientometric Analysis," Sustainability, MDPI, vol. 12(21), pages 1-21, October.
    12. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    13. Wang Guizhou & Zhang Si & Yu Tao & Ning Yu, 2021. "A Systematic Overview of Blockchain Research," Journal of Systems Science and Information, De Gruyter, vol. 9(3), pages 205-238, June.
    14. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    15. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    16. Shuo Xu & Liyuan Hao & Xin An & Hongshen Pang & Ting Li, 2020. "Review on emerging research topics with key-route main path analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 122(1), pages 607-624, January.
    17. Jiaxing Jiang & Lin Fan, 2022. "Visualizing the Knowledge Domain of Language Experience: A Bibliometric Analysis," SAGE Open, , vol. 12(1), pages 21582440211, January.
    18. Ying Huang & Wolfgang Glänzel & Lin Zhang, 2021. "Tracing the development of mapping knowledge domains," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 6201-6224, July.
    19. Carlos Olmeda-Gómez & Maria-Antonia Ovalle-Perandones & Antonio Perianes-Rodríguez, 2017. "Co-word analysis and thematic landscapes in Spanish information science literature, 1985–2014," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(1), pages 195-217, October.
    20. Hu, Wen & Li, Chun-hua & Ye, Chun & Wang, Ji & Wei, Wei-wei & Deng, Yong, 2019. "Research progress on ecological models in the field of water eutrophication: CiteSpace analysis based on data from the ISI web of science database," Ecological Modelling, Elsevier, vol. 410(C), pages 1-1.

    More about this item

    Keywords

    bibliometrics; CiteSpace; review; scientometrics; Eco-innovation; Mobilite urbaine; Autonomous vehicles;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01877042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.