IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Tree methods

  • Jérôme Lelong


    (MATHFI - Financial mathematics - INRIA Paris-Rocquencourt - INRIA - École des Ponts ParisTech (ENPC) - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12, MATHFI - LJK - Laboratoire Jean Kuntzmann - Institut Polytechnique de Grenoble - Grenoble Institute of Technology - Grenoble 2 UPMF - Université Pierre Mendès France - Grenoble 1 UJF - Université Joseph Fourier - CNRS)

  • Antonino Zanette

    (MATHFI - Financial mathematics - INRIA Paris-Rocquencourt - INRIA - École des Ponts ParisTech (ENPC) - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12)

Registered author(s):

    Tree methods are among the most popular numerical methods to price financial derivatives. Mathematically speaking, they are easy to understand and do not require severe implementation skills to obtain algorithms to price financial derivatives. Tree methods basically consist in approximating the diffusion process modeling the underlying asset price by a discrete random walk. In this contribution, we provide a survey of tree methods for equity options, which focus on multiplicative binomial Cox-Ross-Rubinstein model.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by HAL in its series Post-Print with number hal-00776713.

    in new window

    Date of creation: 15 May 2010
    Date of revision:
    Handle: RePEc:hal:journl:hal-00776713
    Note: View the original document on HAL open archive server:
    Contact details of provider: Web page:

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    2. Francine Diener & MARC Diener, 2004. "Asymptotics of the price oscillations of a European call option in a tree model," Mathematical Finance, Wiley Blackwell, vol. 14(2), pages 271-293.
    3. Bardia Kamrad & Peter Ritchken, 1991. "Multinomial Approximating Models for Options with k State Variables," Management Science, INFORMS, vol. 37(12), pages 1640-1652, December.
    4. Babbs, Simon, 2000. "Binomial valuation of lookback options," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1499-1525, October.
    5. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
    6. Philipp J. Schönbucher, 2000. "A Tree Implementation of a Credit Spread Model for Credit Derivatives," Bonn Econ Discussion Papers bgse17_2001, University of Bonn, Germany.
    7. Jér�me Barraquand & Thierry Pudet, 1996. "Pricing Of American Path-Dependent Contingent Claims," Mathematical Finance, Wiley Blackwell, vol. 6(1), pages 17-51.
    8. Boyle, Phelim P & Evnine, Jeremy & Gibbs, Stephen, 1989. "Numerical Evaluation of Multivariate Contingent Claims," Review of Financial Studies, Society for Financial Studies, vol. 2(2), pages 241-50.
    9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    10. P. Forsyth & K. Vetzal & R. Zvan, 2002. "Convergence of numerical methods for valuing path-dependent options using interpolation," Review of Derivatives Research, Springer, vol. 5(3), pages 273-314, October.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00776713. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.