IDEAS home Printed from https://ideas.repec.org/p/hal/cesptp/halshs-00197491.html

Uniform payoff security and Nash equilibrium in metric games

Author

Listed:
  • Paulo Klinger Monteiro

    (FGV-EPGE - Universidad de Brazil)

  • Frank H. Page Jr.

    (UA - University of Alabama [Tuscaloosa], CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We introduce a condition, uniform payoff security, for games with separable metric strategy spaces and payoffs bounded and measurable in players' strategies. We show that if any such metric game G is uniformly payoff secure, then its mixed extension G is payoff secure. We also establish that if a uniformly payoff secure metric game G has compact strategy spaces, and if its mixed extension G has reciprocally upper semicontinuous payoffs, then G has a Nash equilibrium in mixed strategies. We provide several economic examples of metric games satisfying uniform payoff security.

Suggested Citation

  • Paulo Klinger Monteiro & Frank H. Page Jr., 2005. "Uniform payoff security and Nash equilibrium in metric games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00197491, HAL.
  • Handle: RePEc:hal:cesptp:halshs-00197491
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00197491v1
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00197491v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:cesptp:halshs-00197491. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.