IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Existence of Equilibria in Discontinuous and Nonconvex Games

  • Rabia Nessah
  • Guoqiang Tian

No abstract is available for this item.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.dklevine.com/archive/refs4814577000000000206.pdf
Download Restriction: no

Paper provided by David K. Levine in its series Levine's Working Paper Archive with number 814577000000000206.

as
in new window

Length:
Date of creation: 02 May 2009
Date of revision:
Handle: RePEc:cla:levarc:814577000000000206
Contact details of provider: Web page: http://www.dklevine.com/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Robson~ Arthur J., 1994. "An Informationally Robust Equilibrium for Two-Person Nonzero-Sum Games," Games and Economic Behavior, Elsevier, vol. 7(2), pages 233-245, September.
  2. Nishimura, Kazuo & Friedman, James, 1981. "Existence of Nash Equilibrium in n Person Games without Quasi-Concavity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 637-48, October.
  3. Guilherme Carmona, 2005. "On the existence of equilibria in discontinuous games: three counterexamples," International Journal of Game Theory, Springer, vol. 33(2), pages 181-187, 06.
  4. Simon, Leo K. & Zame, William R., 1987. "Discontinous Games and Endogenous Sharing Rules," Department of Economics, Working Paper Series qt8n46v2wv, Department of Economics, Institute for Business and Economic Research, UC Berkeley.
  5. Tian, Guoqiang, 1993. "Necessary and Sufficient Conditions for Maximization of a Class of Preference Relations," Review of Economic Studies, Wiley Blackwell, vol. 60(4), pages 949-58, October.
  6. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
  7. Guoqiang Tian, 2009. "The Existence of Equilibria in Games with Arbitrary Strategy Spaces and Payoffs: A Full Characterization," Levine's Working Paper Archive 814577000000000160, David K. Levine.
  8. Morgan, Jacqueline & Scalzo, Vincenzo, 2007. "Pseudocontinuous functions and existence of Nash equilibria," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 174-183, February.
  9. Baye, Michael R & Tian, Guoqiang & Zhou, Jianxin, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," Review of Economic Studies, Wiley Blackwell, vol. 60(4), pages 935-48, October.
  10. Athey, S., 1997. "Sigle Crossing Properties and the Existence of Pure Strategy Equilibria in Games of Incomplete Information," Working papers 97-11, Massachusetts Institute of Technology (MIT), Department of Economics.
  11. Tian, Guoqiang & Zhou, Jianxin, 1995. "Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization," Journal of Mathematical Economics, Elsevier, vol. 24(3), pages 281-303.
  12. Monteiro, Paulo Klinger & Page Jr, Frank H., 2007. "Uniform payoff security and Nash equilibrium in compact games," Journal of Economic Theory, Elsevier, vol. 134(1), pages 566-575, May.
  13. Adib Bagh & Alejandro Jofre, 2006. "Reciprocal Upper Semicontinuity and Better Reply Secure Games: A Comment," Econometrica, Econometric Society, vol. 74(6), pages 1715-1721, November.
  14. Gatti, J.R.J., 2005. "A Note on the Existence of Nash Equilibrium in Games with Discontinuous Payoffs," Cambridge Working Papers in Economics 0510, Faculty of Economics, University of Cambridge.
  15. Philip J. Reny, 1999. "On the Existence of Pure and Mixed Strategy Nash Equilibria in Discontinuous Games," Econometrica, Econometric Society, vol. 67(5), pages 1029-1056, September.
  16. Paul Rothstein, 2007. "Discontinuous Payoffs, Shared Resources, and Games of Fiscal Competition: Existence of Pure Strategy Nash Equilibrium," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 9(2), pages 335-368, 04.
  17. Simon, Leo K, 1987. "Games with Discontinuous Payoffs," Review of Economic Studies, Wiley Blackwell, vol. 54(4), pages 569-97, October.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levarc:814577000000000206. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.