Overview: bioenergy and agriculture promises and challenges
Author
Abstract
Suggested Citation
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Kibuge, R.M. & Kariuki, S.T. & Njue, M.R., 2015. "Influence of fuel properties on the burning characteristics of sour plum (Ximenia americana L.) seed oil compared with Jatropha curcas L. seed oil," Renewable Energy, Elsevier, vol. 78(C), pages 128-131.
- Jiashun Huang & Weiping Li & Xijie Huang & Lijia Guo, 2017. "Analysis of the Relative Sustainability of Land Devoted to Bioenergy: Comparing Land-Use Alternatives in China," Sustainability, MDPI, vol. 9(5), pages 1-13, May.
- Dal Belo Leite, João Guilherme & Justino, Flávio Barbosa & Silva, João Vasco & Florin, Madeleine J. & van Ittersum, Martin K., 2015. "Socioeconomic and environmental assessment of biodiesel crops on family farming systems in Brazil," Agricultural Systems, Elsevier, vol. 133(C), pages 22-34.
- Monteiro, Nathalia & Altman, Ira & Lahiri, Sajal, 2012. "The impact of ethanol production on food prices: The role of interplay between the U.S. and Brazil," Energy Policy, Elsevier, vol. 41(C), pages 193-199.
- Dick, Ndukwe Agbai & Wilson, Paul, 2018. "Analysis of the inherent energy-food dilemma of the Nigerian biofuels policy using partial equilibrium model: The Nigerian Energy-Food Model (NEFM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 500-514.
- Dyer, George A. & Taylor, J. Edward, 2011. "The Corn Price Surge: Impacts on Rural Mexico," World Development, Elsevier, vol. 39(10), pages 1878-1887.
- Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
- Acosta-Michlik, Lilibeth & Lucht, Wolfgang & Bondeau, Alberte & Beringer, Tim, 2011. "Integrated assessment of sustainability trade-offs and pathways for global bioenergy production: Framing a novel hybrid approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2791-2809, August.
More about this item
Keywords
Bioenergy; Agriculture; Biofuels; Environmental sustainability; Poverty; Energy consumption; International trade;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fpr:2020br:14(1). See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/ifprius.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.