IDEAS home Printed from
   My bibliography  Save this paper

Artificial Intelligence and Inflation Forecasts



We explore the ability of Large Language Models (LLMs) to produce in-sample conditional inflation forecasts during the 2019-2023 period. We use a leading LLM (Google AI's PaLM) to produce distributions of conditional forecasts at different horizons and compare these forecasts to those of a leading source, the Survey of Professional Forecasters (SPF). We find that LLM forecasts generate lower mean-squared errors overall in most years, and at almost all horizons. LLM forecasts exhibit slower reversion to the 2% inflation anchor.

Suggested Citation

  • Miguel Faria-e-Castro & Fernando Leibovici, 2023. "Artificial Intelligence and Inflation Forecasts," Working Papers 2023-015, Federal Reserve Bank of St. Louis, revised 26 Feb 2024.
  • Handle: RePEc:fip:fedlwp:96478
    DOI: 10.20955/wp.2023.015

    Download full text from publisher

    File URL:
    File Function: Full text
    Download Restriction: no

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    References listed on IDEAS

    1. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," NBER Working Papers 31122, National Bureau of Economic Research, Inc.
    2. John J. Horton, 2023. "Large Language Models as Simulated Economic Agents: What Can We Learn from Homo Silicus?," Papers 2301.07543,
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kevin Leyton-Brown & Paul Milgrom & Neil Newman & Ilya Segal, 2023. "Artificial Intelligence and Market Design: Lessons Learned from Radio Spectrum Reallocation," NBER Chapters, in: New Directions in Market Design, National Bureau of Economic Research, Inc.
    2. Kirshner, Samuel N., 2024. "GPT and CLT: The impact of ChatGPT's level of abstraction on consumer recommendations," Journal of Retailing and Consumer Services, Elsevier, vol. 76(C).
    3. Zengqing Wu & Run Peng & Xu Han & Shuyuan Zheng & Yixin Zhang & Chuan Xiao, 2023. "Smart Agent-Based Modeling: On the Use of Large Language Models in Computer Simulations," Papers 2311.06330,, revised Dec 2023.
    4. Joshua C. Yang & Damian Dailisan & Marcin Korecki & Carina I. Hausladen & Dirk Helbing, 2024. "LLM Voting: Human Choices and AI Collective Decision Making," Papers 2402.01766,, revised May 2024.
    5. Nir Chemaya & Daniel Martin, 2023. "Perceptions and Detection of AI Use in Manuscript Preparation for Academic Journals," Papers 2311.14720,, revised Jan 2024.
    6. Lijia Ma & Xingchen Xu & Yong Tan, 2024. "Crafting Knowledge: Exploring the Creative Mechanisms of Chat-Based Search Engines," Papers 2402.19421,
    7. Ali Goli & Amandeep Singh, 2023. "Exploring the Influence of Language on Time-Reward Perceptions in Large Language Models: A Study Using GPT-3.5," Papers 2305.02531,, revised Jun 2023.
    8. Evangelos Katsamakas, 2024. "Business models for the simulation hypothesis," Papers 2404.08991,
    9. Christoph Engel & Max R. P. Grossmann & Axel Ockenfels, 2023. "Integrating machine behavior into human subject experiments: A user-friendly toolkit and illustrations," Discussion Paper Series of the Max Planck Institute for Research on Collective Goods 2024_01, Max Planck Institute for Research on Collective Goods.
    10. Yiting Chen & Tracy Xiao Liu & You Shan & Songfa Zhong, 2023. "The emergence of economic rationality of GPT," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 120(51), pages 2316205120-, December.
    11. Jiafu An & Difang Huang & Chen Lin & Mingzhu Tai, 2024. "Measuring Gender and Racial Biases in Large Language Models," Papers 2403.15281,
    12. Fulin Guo, 2023. "GPT in Game Theory Experiments," Papers 2305.05516,, revised Dec 2023.
    13. Jingru Jia & Zehua Yuan & Junhao Pan & Paul McNamara & Deming Chen, 2024. "Decision-Making Behavior Evaluation Framework for LLMs under Uncertain Context," Papers 2406.05972,
    14. Fabio Motoki & Valdemar Pinho Neto & Victor Rodrigues, 2024. "More human than human: measuring ChatGPT political bias," Public Choice, Springer, vol. 198(1), pages 3-23, January.
    15. George Gui & Olivier Toubia, 2023. "The Challenge of Using LLMs to Simulate Human Behavior: A Causal Inference Perspective," Papers 2312.15524,
    16. Felix Chopra & Ingar Haaland, 2023. "Conducting qualitative interviews with AI," CEBI working paper series 23-06, University of Copenhagen. Department of Economics. The Center for Economic Behavior and Inequality (CEBI).
    17. Siting Lu, 2024. "Strategic Interactions between Large Language Models-based Agents in Beauty Contests," Papers 2404.08492,
    18. Shumiao Ouyang & Hayong Yun & Xingjian Zheng, 2024. "How Ethical Should AI Be? How AI Alignment Shapes the Risk Preferences of LLMs," Papers 2406.01168,
    19. Ayato Kitadai & Sinndy Dayana Rico Lugo & Yudai Tsurusaki & Yusuke Fukasawa & Nariaki Nishino, 2024. "Can AI with High Reasoning Ability Replicate Human-like Decision Making in Economic Experiments?," Papers 2406.11426,
    20. Keegan Harris & Nicole Immorlica & Brendan Lucier & Aleksandrs Slivkins, 2023. "Algorithmic Persuasion Through Simulation," Papers 2311.18138,, revised Jun 2024.

    More about this item


    inflation forecasts; large language models; artificial intelligence;
    All these keywords.

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlwp:96478. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anna Oates (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.