IDEAS home Printed from https://ideas.repec.org/p/fip/fedgfe/2009-27.html
   My bibliography  Save this paper

Confidence intervals for long-horizon predictive regressions via reverse regressions

Author

Abstract

Long-horizon predictive regressions in finance pose formidable econometric problems when estimated using the sample sizes that are typically available. A remedy that has been proposed by Hodrick (1992) is to run a reverse regression in which short-horizon returns are projected onto a long-run mean of some predictor. By covariance stationarity, the slope coefficient is zero in the reverse regression if and only if it is zero in the original regression, but testing the hypothesis in the reverse regression avoids small sample problems. Unfortunately this only allows us to test the null of no predictability. In this paper we show how to use the reverse regression to test other hypotheses about the slope coefficient in a long-horizon predictive regression, and to form confidence intervals for this coefficient. We show that this approach to inference works well in small samples.

Suggested Citation

  • Min Wei & Jonathan H. Wright, 2009. "Confidence intervals for long-horizon predictive regressions via reverse regressions," Finance and Economics Discussion Series 2009-27, Board of Governors of the Federal Reserve System (U.S.).
  • Handle: RePEc:fip:fedgfe:2009-27
    as

    Download full text from publisher

    File URL: http://www.federalreserve.gov/pubs/feds/2009/200927/200927abs.html
    Download Restriction: no

    File URL: http://www.federalreserve.gov/pubs/feds/2009/200927/200927pap.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter & Hodrick, Robert J, 1980. "Forward Exchange Rates as Optimal Predictors of Future Spot Rates: An Econometric Analysis," Journal of Political Economy, University of Chicago Press, vol. 88(5), pages 829-853, October.
    2. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    3. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    4. Bekaert, Geert & Hodrick, Robert J. & Marshall, David A., 2001. "Peso problem explanations for term structure anomalies," Journal of Monetary Economics, Elsevier, vol. 48(2), pages 241-270, October.
    5. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    6. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    7. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    8. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    9. Goetzmann, William Nelson & Jorion, Philippe, 1993. "Testing the Predictive Power of Dividend Yields," Journal of Finance, American Finance Association, vol. 48(2), pages 663-679, June.
    10. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    11. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bakshi, Gurdip & Panayotov, George, 2013. "Predictability of currency carry trades and asset pricing implications," Journal of Financial Economics, Elsevier, vol. 110(1), pages 139-163.
    2. Bakshi, Gurdip & Panayotov, George & Skoulakis, Georgios, 2011. "Improving the predictability of real economic activity and asset returns with forward variances inferred from option portfolios," Journal of Financial Economics, Elsevier, vol. 100(3), pages 475-495, June.
    3. Heaton, Chris, 2015. "Testing for multiple-period predictability between serially dependent time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 587-597.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 2008. "The Myth of Long-Horizon Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1577-1605, July.
    2. Erik Hjalmarsson, 2006. "Inference in Long-Horizon Regressions," International Finance Discussion Papers 853, Board of Governors of the Federal Reserve System (U.S.).
    3. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    4. Kostakis, Alexandros & Magdalinos, Tassos & Stamatogiannis, Michalis P., 2023. "Taking stock of long-horizon predictability tests: Are factor returns predictable?," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Jacob Boudoukh & Matthew Richardson & Robert Whitelaw, 2005. "The Myth of Long-Horizon Predictability," NBER Working Papers 11841, National Bureau of Economic Research, Inc.
    6. Jacob Boudoukh & Ronen Israel & Matthew P. Richardson, 2020. "Biases in Long-Horizon Predictive Regressions," NBER Working Papers 27410, National Bureau of Economic Research, Inc.
    7. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.
    8. Nelson C. Mark & Donggyu Sul, 2004. "The Use of Predictive Regressions at Alternative Horizons in Finance and Economics," Finance 0409032, University Library of Munich, Germany.
    9. Jon Faust & Jonathan H. Wright, 2011. "Efficient Prediction of Excess Returns," The Review of Economics and Statistics, MIT Press, vol. 93(2), pages 647-659, May.
    10. John Y. Campbell & Luis M. Viceira, 2005. "The Term Structure of the Risk–Return Trade-Off," Financial Analysts Journal, Taylor & Francis Journals, vol. 61(1), pages 34-44, January.
    11. Maynard, Alex & Shimotsu, Katsumi, 2009. "Covariance-Based Orthogonality Tests For Regressors With Unknown Persistence," Econometric Theory, Cambridge University Press, vol. 25(1), pages 63-116, February.
    12. Hjalmarsson, Erik, 2005. "On the Predictability of Global Stock Returns," Working Papers in Economics 161, University of Gothenburg, Department of Economics.
    13. Charlotte S. Hansen & Bjorn E. Tuypens, 2004. "Long-Run Regressions: Theory and Application to US Asset Markets," Finance 0410018, University Library of Munich, Germany.
    14. Campbell, John Y., 2001. "Why long horizons? A study of power against persistent alternatives," Journal of Empirical Finance, Elsevier, vol. 8(5), pages 459-491, December.
    15. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    16. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    17. Valkanov, Rossen, 2003. "Long-horizon regressions: theoretical results and applications," Journal of Financial Economics, Elsevier, vol. 68(2), pages 201-232, May.
    18. Helmut Herwartz & Leonardo Morales-Arias, 2009. "In-sample and out-of-sample properties of international stock return dynamics conditional on equilibrium pricing factors," The European Journal of Finance, Taylor & Francis Journals, vol. 15(1), pages 1-28.
    19. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    20. Jacob Boudoukh & Matthew Richardson & Robert Whitelaw, 2005. "The Information in Long-Maturity Forward Rates: Implications for Exchange Rates and the Forward Premium Anomaly," NBER Working Papers 11840, National Bureau of Economic Research, Inc.

    More about this item

    Keywords

    Regression analysis; Stocks;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedgfe:2009-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ryan Wolfslayer ; Keisha Fournillier (email available below). General contact details of provider: https://edirc.repec.org/data/frbgvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.