IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwq/96521.html
   My bibliography  Save this paper

Random Walk Forecasts of Stationary Processes Have Low Bias

Author

Listed:
  • Kurt Graden Lunsford
  • Kenneth D. West

Abstract

We study the use of a zero mean first difference model to forecast the level of a scalar time series that is stationary in levels. Let bias be the average value of a series of forecast errors. Then the bias of forecasts from a misspecified ARMA model for the first difference of the series will tend to be smaller in magnitude than the bias of forecasts from a correctly specified model for the level of the series. Formally, let P be the number of forecasts. Then the bias from the first difference model has expectation zero and a variance that is O(1/P-squared), while the variance of the bias from the levels model is generally O(1/P). With a driftless random walk as our first difference model, we confirm this theoretical result with simulations and empirical work: random walk bias is generally one-tenth to one-half that of an appropriately specified model fit to levels.

Suggested Citation

  • Kurt Graden Lunsford & Kenneth D. West, 2023. "Random Walk Forecasts of Stationary Processes Have Low Bias," Working Papers 23-18, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwq:96521
    DOI: 10.26509/frbc-wp-202318
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-wp-202318
    File Function: Persistent Link
    Download Restriction: no

    File URL: https://www.clevelandfed.org/-/media/project/clevelandfedtenant/clevelandfedsite/publications/working-papers/2023/wp-2318-random-walk-forecasts-of-stationary-processes-have-low-bias.pdf
    File Function: Full Text
    Download Restriction: no

    File URL: https://libkey.io/10.26509/frbc-wp-202318?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richardson, Matthew & Stock, James H., 1989. "Drawing inferences from statistics based on multiyear asset returns," Journal of Financial Economics, Elsevier, vol. 25(2), pages 323-348, December.
    2. Ulrich K. Müller & Mark W. Watson, 2016. "Measuring Uncertainty about Long-Run Predictions," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 83(4), pages 1711-1740.
    3. Croushore Dean, 2010. "An Evaluation of Inflation Forecasts from Surveys Using Real-Time Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 10(1), pages 1-32, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boudoukh, Jacob & Israel, Ronen & Richardson, Matthew, 2022. "Biases in long-horizon predictive regressions," Journal of Financial Economics, Elsevier, vol. 145(3), pages 937-969.
    2. Wright, Jonathan H., 2019. "Some observations on forecasting and policy," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1186-1192.
    3. Rhys Bidder & Ian Dew-Becker, 2016. "Long-Run Risk Is the Worst-Case Scenario," American Economic Review, American Economic Association, vol. 106(9), pages 2494-2527, September.
    4. Tallman, Ellis W. & Zaman, Saeed, 2020. "Combining survey long-run forecasts and nowcasts with BVAR forecasts using relative entropy," International Journal of Forecasting, Elsevier, vol. 36(2), pages 373-398.
    5. James Yetman & Gregor W. Smith, 2007. "The Curse Of Irving Fisher (professional Forecasters' Version)," Working Paper 1144, Economics Department, Queen's University.
    6. Ahmed, M. Iqbal & Cassou, Steven P., 2021. "Asymmetries in the effects of unemployment expectation shocks as monetary policy shifts with economic conditions," Economic Modelling, Elsevier, vol. 100(C).
    7. Hjalmarsson, Erik, 2008. "Interpreting long-horizon estimates in predictive regressions," Finance Research Letters, Elsevier, vol. 5(2), pages 104-117, June.
    8. Pelgrin, Florian & Venditti, Alain, 2022. "On the long-run fluctuations of inheritance in two-sector OLG models," Journal of Mathematical Economics, Elsevier, vol. 101(C).
    9. Bedri Kamil Onur Taş, 2016. "Does the Federal Reserve have Private Information about its Future Actions?," Economica, London School of Economics and Political Science, vol. 83(331), pages 498-517, July.
    10. Charles Engel & John H Rogers, 2009. "Expected Consumption Growth from Cross-Country Surveys: Implications for Assessing International Capital Markets," IMF Staff Papers, Palgrave Macmillan, vol. 56(3), pages 543-573, August.
    11. Pablo Pincheira B. & Nicolás Fernández, 2011. "Jaque Mate a las Proyecciones de Consenso," Working Papers Central Bank of Chile 630, Central Bank of Chile.
    12. Taeyoung Doh, 2017. "Trend and Uncertainty in the Long-Term Real Interest Rate: Bayesian Exponential Tilting with Survey Data," Research Working Paper RWP 17-8, Federal Reserve Bank of Kansas City.
    13. Filip Novotný & Marie Raková, 2011. "Assessment of Consensus Forecasts Accuracy: The Czech National Bank Perspective," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 61(4), pages 348-366, August.
    14. Christopher Busch & David Domeij & Fatih Guvenen & Rocio Madera, 2022. "Skewed Idiosyncratic Income Risk over the Business Cycle: Sources and Insurance," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(2), pages 207-242, April.
    15. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    16. Shu-Ling Chen & Hyeongwoo Kim, 2011. "Nonlinear Mean Reversion across National Stock Markets: Evidence from Emerging Asian Markets," International Economic Journal, Taylor & Francis Journals, vol. 25(2), pages 239-250.
    17. Dick Dijk & Siem Jan Koopman & Michel Wel & Jonathan H. Wright, 2014. "Forecasting interest rates with shifting endpoints," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(5), pages 693-712, August.
    18. Bonomo, Marco & Garcia, Rene, 1996. "Consumption and equilibrium asset pricing: An empirical assessment," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 239-265, September.
    19. Benjamin Miranda Tabak, 2003. "The random walk hypothesis and the behaviour of foreign capital portfolio flows: the Brazilian stock market case," Applied Financial Economics, Taylor & Francis Journals, vol. 13(5), pages 369-378.
    20. Amélie Charles & Olivier Darné, 2009. "Variance‐Ratio Tests Of Random Walk: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 23(3), pages 503-527, July.

    More about this item

    Keywords

    ARMA Models; Overdifferenced; Prediction; Macroeconomic Time Series; Simulation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwq:96521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.