IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/79388.html
   My bibliography  Save this paper

Extremum sieve estimation in k-out-of-n system

Author

Listed:
  • Komarova, Tatiana

Abstract

The paper considers nonparametric estimation of absolutely continuous distribution functions of independent lifetimes of non-identical components in k-out-of-n systems, 2 k-out-of-n, from the observed "autopsy" data. In economics, ascending "button" or "clock" auctions with n heterogeneous bidders with independent private values present 2-out-of-n systems. Classical competing risks models are examples of n-out-of-n systems. Under weak conditions on the underlying distributions the estimation problem is shown to be well posed and the suggested extremum sieve estimator is proven to be consistent. The paper considers sieve spaces of Bernstein polynomials which allow to easily implement constraints on the monotonicity of estimated distribution functions.

Suggested Citation

  • Komarova, Tatiana, 2017. "Extremum sieve estimation in k-out-of-n system," LSE Research Online Documents on Economics 79388, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:79388
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/79388/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lee, Sokbae & Lewbel, Arthur, 2013. "Nonparametric Identification Of Accelerated Failure Time Competing Risks Models," Econometric Theory, Cambridge University Press, vol. 29(5), pages 905-919, October.
    2. Jaap H. Abbring & Gerard J. Van Den Berg, 2003. "The identifiability of the mixed proportional hazards competing risks model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 701-710, August.
    3. Tatiana Komarova, 2013. "A new approach to identifying generalized competing risks models with application to secondā€price auctions," Quantitative Economics, Econometric Society, vol. 4(2), pages 269-328, July.
    4. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    5. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    6. Komarova, Tatiana, 2013. "A new approach to identifying generalized competing risks models with application to second-price auctions," LSE Research Online Documents on Economics 50245, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lamy, Laurent & Patnam, Manasa & Visser, Michael, 2023. "Distinguishing incentive from selection effects in auction-determined contracts," Journal of Econometrics, Elsevier, vol. 235(2), pages 1172-1202.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yao Luo & Peijun Sang & Ruli Xiao, 2024. "Order Statistics Approaches to Unobserved Heterogeneity in Auctions," Working Papers tecipa-776, University of Toronto, Department of Economics.
    2. Kong, Yunmi, 2022. "Identification of English auctions when losing entrants are not observed," International Journal of Industrial Organization, Elsevier, vol. 85(C).
    3. Xiaohong Chen & Demian Pouzo, 2012. "Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals," Econometrica, Econometric Society, vol. 80(1), pages 277-321, January.
    4. Shiu, Ji-Liang & Hu, Yingyao, 2013. "Identification and estimation of nonlinear dynamic panel data models with unobserved covariates," Journal of Econometrics, Elsevier, vol. 175(2), pages 116-131.
    5. Kim Kyoo il & Petrin Amil, 2022. "A Generalized Non-Parametric Instrumental Variable-Control Function Approach to Estimation in Nonlinear Settings," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 91-125, January.
    6. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    7. Breunig, Christoph & Mammen, Enno & Simoni, Anna, 2018. "Nonparametric estimation in case of endogenous selection," Journal of Econometrics, Elsevier, vol. 202(2), pages 268-285.
    8. Gayle, Wayne-Roy & Namoro, Soiliou Daw, 2013. "Estimation of a nonlinear panel data model with semiparametric individual effects," Journal of Econometrics, Elsevier, vol. 175(1), pages 46-59.
    9. Santos, Andres, 2011. "Instrumental variable methods for recovering continuous linear functionals," Journal of Econometrics, Elsevier, vol. 161(2), pages 129-146, April.
    10. Halbert White & Karim Chalak, 2013. "Identification and Identification Failure for Treatment Effects Using Structural Systems," Econometric Reviews, Taylor & Francis Journals, vol. 32(3), pages 273-317, November.
    11. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    12. Maican, Florin G., 2012. "From Boom to Bust and Back Again: A dynamic analysis of IT services," Working Papers in Economics 543, University of Gothenburg, Department of Economics.
    13. Peter C.B. Phillips & Liangjun Su, 2009. "Nonparametric Structural Estimation via Continuous Location Shifts in an Endogenous Regressor," Cowles Foundation Discussion Papers 1702, Cowles Foundation for Research in Economics, Yale University.
    14. Michael Jansson & Demian Pouzo, 2017. "Towards a General Large Sample Theory for Regularized Estimators," Papers 1712.07248, arXiv.org, revised Jul 2020.
    15. Hall, George & Rust, John, 2021. "Estimation of endogenously sampled time series: The case of commodity price speculation in the steel market," Journal of Econometrics, Elsevier, vol. 222(1), pages 219-243.
    16. Dong, Chaohua & Gao, Jiti & Peng, Bin, 2015. "Semiparametric single-index panel data models with cross-sectional dependence," Journal of Econometrics, Elsevier, vol. 188(1), pages 301-312.
    17. Mogens Fosgerau & Dennis Kristensen, 2021. "Identification of a class of index models: A topological approach," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 121-133.
    18. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
    19. Luo, Yao & Xiao, Ruli, 2023. "Identification of auction models using order statistics," Journal of Econometrics, Elsevier, vol. 236(1).
    20. Ai, Chunrong & Chen, Xiaohong, 2012. "The semiparametric efficiency bound for models of sequential moment restrictions containing unknown functions," Journal of Econometrics, Elsevier, vol. 170(2), pages 442-457.

    More about this item

    Keywords

    k-out-of-n systems; competing risks; sieve estimation; Bernstein polynomials;
    All these keywords.

    JEL classification:

    • J1 - Labor and Demographic Economics - - Demographic Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:79388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.