IDEAS home Printed from
   My bibliography  Save this paper

Watermark options


  • Rodosthenous, Neofytos
  • Zervos, Mihail


We consider a new family of derivatives whose payoffs become strictly positive when the price of their underlying asset falls relative to its historical maximum. We derive the solution to the discretionary stopping problems arising in the context of pricing their perpetual American versions by means of an explicit construction of their value functions. In particular, we fully characterise the free-boundary functions that provide the optimal stopping times of these genuinely two-dimensional problems as the unique solutions to highly non-linear first order ODEs that have the characteristics of a separatrix. The asymptotic growth of these free-boundary functions can take qualitatively different forms depending on parameter values, which is an interesting new feature.

Suggested Citation

  • Rodosthenous, Neofytos & Zervos, Mihail, 2017. "Watermark options," LSE Research Online Documents on Economics 67859, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:67859

    Download full text from publisher

    File URL:
    File Function: Open access version.
    Download Restriction: no

    References listed on IDEAS

    1. A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173,, revised Nov 2008.
    2. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    3. Min Dai & Yue Kuen Kwok, 2006. "Characterization Of Optimal Stopping Regions Of American Asian And Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 63-82, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Neofytos Rodosthenous & Mihail Zervos, 2017. "Watermark options," Finance and Stochastics, Springer, vol. 21(1), pages 157-186, January.
    2. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363,
    3. Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    5. Keller-Ressel, Martin, 2015. "Simple examples of pure-jump strict local martingales," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4142-4153.
    6. Wong, Bernard, 2009. "Explicit construction of stochastic exponentials with arbitrary expectation k[set membership, variant](0,1)," Statistics & Probability Letters, Elsevier, vol. 79(7), pages 880-883, April.
    7. Fergusson, Kevin, 2020. "Less-Expensive Valuation And Reserving Of Long-Dated Variable Annuities When Interest Rates And Mortality Rates Are Stochastic," ASTIN Bulletin, Cambridge University Press, vol. 50(2), pages 381-417, May.
    8. A. Fiori Maccioni, 2011. "The risk neutral valuation paradox," Working Paper CRENoS 201112, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
    9. Travis Fisher & Sergio Pulido & Johannes Ruf, 2019. "Financial Models with Defaultable Numéraires," Post-Print hal-01240736, HAL.
    10. Jarrow, Robert A. & Kwok, Simon S., 2020. "Inferring Financial Bubbles from Option Data," Working Papers 2020-04, University of Sydney, School of Economics, revised Jun 2021.
    11. repec:uts:finphd:40 is not listed on IDEAS
    12. Li, Xue-Mei, 2017. "Strict local martingales: Examples," Statistics & Probability Letters, Elsevier, vol. 129(C), pages 65-68.
    13. Martin Herdegen & Martin Schweizer, 2018. "Semi‐efficient valuations and put‐call parity," Mathematical Finance, Wiley Blackwell, vol. 28(4), pages 1061-1106, October.
    14. Erhan Bayraktar & Constantinos Kardaras & Hao Xing, 2010. "Valuation equations for stochastic volatility models," Papers 1004.3299,, revised Dec 2011.
    15. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230,, revised Oct 2017.
    16. Hardy Hulley & Johannes Ruf, 2019. "Weak Tail Conditions for Local Martingales," Published Paper Series 2019-2, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    17. Robert Jarrow & Philip Protter & Sergio Pulido, 2015. "The Effect Of Trading Futures On Short Sale Constraints," Mathematical Finance, Wiley Blackwell, vol. 25(2), pages 311-338, April.
    18. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644,, revised Jul 2016.
    19. Gianluca Cassese, 2017. "Asset pricing in an imperfect world," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 64(3), pages 539-570, October.
    20. Johannes Ruf, 2013. "Negative call prices," Annals of Finance, Springer, vol. 9(4), pages 787-794, November.
    21. Francesca Biagini & Jacopo Mancin, 2016. "Robust Financial Bubbles," Papers 1602.05471,

    More about this item


    optimal stopping; running maximum process; variational inequality; two dimensional free-boundary problem; separatrix;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:67859. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.