IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1308.4363.html
   My bibliography  Save this paper

Optimal robust bounds for variance options

Author

Listed:
  • Alexander M. G. Cox
  • Jiajie Wang

Abstract

Robust, or model-independent properties of the variance swap are well-known, and date back to Dupire and Neuberger, who showed that, given the price of co-terminal call options, the price of a variance swap was exactly specified under the assumption that the price process is continuous. In Cox and Wang we showed that a lower bound on the price of a variance call could be established using a solution to the Skorokhod embedding problem due to Root. In this paper, we provide a construction, and a proof of optimality of the upper bound, using results of Rost and Chacon, and show how this proof can be used to determine a super-hedging strategy which is model-independent. In addition, we outline how the hedging strategy may be computed numerically. Using these methods, we also show that the Heston-Nandi model is 'asymptotically extreme' in the sense that, for large maturities, the Heston-Nandi model gives prices for variance call options which are approximately the lowest values consistent with the same call price data.

Suggested Citation

  • Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
  • Handle: RePEc:arx:papers:1308.4363
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1308.4363
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    as
    1. Alexander Cox & David Hobson, 2005. "Local martingales, bubbles and option prices," Finance and Stochastics, Springer, vol. 9(4), pages 477-492, October.
    2. Peter Carr & Roger Lee, 2010. "Hedging variance options on continuous semimartingales," Finance and Stochastics, Springer, vol. 14(2), pages 179-207, April.
    3. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    4. Dylan Possamai & Guillaume Royer & Nizar Touzi, 2013. "On the Robust superhedging of measurable claims," Papers 1302.1850, arXiv.org, revised Feb 2013.
    5. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    6. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    7. Ariel Neufeld & Marcel Nutz, 2012. "Superreplication under Volatility Uncertainty for Measurable Claims," Papers 1208.6486, arXiv.org, revised Apr 2013.
    8. Alireza Javaheri & Paul Wilmott & Espen Haug, 2004. "GARCH and Volatility swaps," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 589-595.
    9. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    10. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    13. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    14. A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173, arXiv.org, revised Nov 2008.
    15. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644, arXiv.org, revised Jul 2016.
    2. Alexander M. G. Cox & Sam M. Kinsley, 2017. "Robust Hedging of Options on a Leveraged Exchange Traded Fund," Papers 1702.07169, arXiv.org.
    3. Gassiat, Paul & Oberhauser, Harald & dos Reis, Gonçalo, 2015. "Root’s barrier, viscosity solutions of obstacle problems and reflected FBSDEs," Stochastic Processes and their Applications, Elsevier, vol. 125(12), pages 4601-4631.
    4. repec:eee:spapps:v:127:y:2017:i:10:p:3447-3464 is not listed on IDEAS
    5. repec:spr:finsto:v:21:y:2017:i:4:d:10.1007_s00780-017-0338-2 is not listed on IDEAS
    6. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1308.4363. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: http://arxiv.org/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.