IDEAS home Printed from
   My bibliography  Save this paper

Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping


  • A. M. G. Cox
  • David Hobson
  • Jan Ob{l}'oj


We develop a class of pathwise inequalities of the form $H(B_t)\ge M_t+F(L_t)$, where $B_t$ is Brownian motion, $L_t$ its local time at zero and $M_t$ a local martingale. The concrete nature of the representation makes the inequality useful for a variety of applications. In this work, we use the inequalities to derive constructions and optimality results of Vallois' Skorokhod embeddings. We discuss their financial interpretation in the context of robust pricing and hedging of options written on the local time. In the final part of the paper we use the inequalities to solve a class of optimal stopping problems of the form $\sup_{\tau}\mathbb{E}[F(L_{\tau})-\int _0^{\tau}\beta(B_s) ds]$. The solution is given via a minimal solution to a system of differential equations and thus resembles the maximality principle described by Peskir. Throughout, the emphasis is placed on the novelty and simplicity of the techniques.

Suggested Citation

  • A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173,, revised Nov 2008.
  • Handle: RePEc:arx:papers:math/0702173

    Download full text from publisher

    File URL:
    File Function: Latest version
    Download Restriction: no

    References listed on IDEAS

    1. Peter P. Carr & Robert A. Jarrow, 2008. "The Stop-Loss Start-Gain Paradox and Option Valuation: A new Decomposition into Intrinsic and Time Value," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 4, pages 61-84 World Scientific Publishing Co. Pte. Ltd..
    2. Haydyn Brown & David Hobson & L. C. G. Rogers, 2001. "Robust Hedging of Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 285-314.
    3. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Rodosthenous, Neofytos & Zervos, Mihail, 2017. "Watermark options," LSE Research Online Documents on Economics 67859, London School of Economics and Political Science, LSE Library.
    2. Mathias Beiglbock & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Promel, 2015. "Pathwise super-replication via Vovk's outer measure," Papers 1504.03644,, revised Jul 2016.
    3. Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Working Papers hal-00790001, HAL.
    5. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    6. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    7. Guo, Xin & Zervos, Mihail, 2010. "[pi] options," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1033-1059, July.
    8. Neofytos Rodosthenous & Mihail Zervos, 2017. "Watermark options," Finance and Stochastics, Springer, vol. 21(1), pages 157-186, January.
    9. Beatrice Acciaio & Mathias Beiglbock & Friedrich Penkner & Walter Schachermayer, 2013. "A model-free version of the fundamental theorem of asset pricing and the super-replication theorem," Papers 1301.5568,, revised Mar 2013.
    10. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230,, revised Oct 2017.
    11. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    12. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2013. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    13. repec:spr:finsto:v:21:y:2017:i:4:d:10.1007_s00780-017-0338-2 is not listed on IDEAS
    14. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063,, revised Aug 2016.
    15. Gaoyue Guo, 2017. "A stability result on optimal Skorokhod embedding," Papers 1701.08204,
    16. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363,
    17. Pierre Henry-Labordere & Nizar Touzi, 2013. "An Explicit Martingale Version of Brenier's Theorem," Papers 1302.4854,, revised Apr 2013.
    18. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0702173. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.