IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2212.14174.html
   My bibliography  Save this paper

Supermartingale Brenier's Theorem with full-marginals constraint

Author

Listed:
  • Erhan Bayraktar
  • Shuoqing Deng
  • Dominykas Norgilas

Abstract

We explicitly construct the supermartingale version of the Fr{\'e}chet-Hoeffding coupling in the setting with infinitely many marginal constraints. This extends the results of Henry-Labordere et al. obtained in the martingale setting. Our construction is based on the Markovian iteration of one-period optimal supermartingale couplings. In the limit, as the number of iterations goes to infinity, we obtain a pure jump process that belongs to a family of local L{\'e}vy models introduced by Carr et al. We show that the constructed processes solve the continuous-time supermartingale optimal transport problem for a particular family of path-dependent cost functions. The explicit computations are provided in the following three cases: the uniform case, the Bachelier model and the Geometric Brownian Motion case.

Suggested Citation

  • Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2022. "Supermartingale Brenier's Theorem with full-marginals constraint," Papers 2212.14174, arXiv.org.
  • Handle: RePEc:arx:papers:2212.14174
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2212.14174
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mathias Beiglbock & Benjamin Jourdain & William Margheriti & Gudmund Pammer, 2021. "Stability of the Weak Martingale Optimal Transport Problem," Papers 2109.06322, arXiv.org, revised Apr 2022.
    2. Beiglböck, Mathias & Henry-Labordère, Pierre & Touzi, Nizar, 2017. "Monotone martingale transport plans and Skorokhod embedding," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 3005-3013.
    3. Luciano Campi & Ismail Laachir & Claude Martini, 2017. "Change of numeraire in the two-marginals martingale transport problem," Finance and Stochastics, Springer, vol. 21(2), pages 471-486, April.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Y. Dolinsky & H. M. Soner, 2014. "Martingale optimal transport in the Skorokhod space," Papers 1404.1516, arXiv.org, revised Feb 2015.
    6. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    7. Alexander M. G. Cox & Jiajie Wang, 2011. "Root's barrier: Construction, optimality and applications to variance options," Papers 1104.3583, arXiv.org, revised Mar 2013.
    8. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    9. David Hobson & Martin Klimmek, 2012. "Model-independent hedging strategies for variance swaps," Finance and Stochastics, Springer, vol. 16(4), pages 611-649, October.
    10. Karandikar, Rajeeva L., 1995. "On pathwise stochastic integration," Stochastic Processes and their Applications, Elsevier, vol. 57(1), pages 11-18, May.
    11. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    12. A. M. G. Cox & David Hobson & Jan Ob{l}'oj, 2007. "Pathwise inequalities for local time: Applications to Skorokhod embeddings and optimal stopping," Papers math/0702173, arXiv.org, revised Nov 2008.
    13. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    14. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    15. Mark Davis & Jan Obłój & Vimal Raval, 2014. "Arbitrage Bounds For Prices Of Weighted Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 821-854, October.
    16. Mathias Beiglboeck & Pierre Henry-Labordere & Nizar Touzi, 2017. "Monotone Martingale Transport Plans and Skorohod Embedding," Papers 1701.06779, arXiv.org.
    17. Haydyn Brown & David Hobson & L. C. G. Rogers, 2001. "Robust Hedging of Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 11(3), pages 285-314, July.
    18. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    19. Alfred Galichon & Pierre Henri-Labordère & Nizar Touzi, 2013. "A stochastic control approach to No-Arbitrage bounds given marginals, with an application to Lookback options," Sciences Po publications info:hdl:2441/5rkqqmvrn4t, Sciences Po.
    20. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    21. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    22. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    23. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    24. Christian†Oliver Ewald & Marc Yor, 2018. "On peacocks and lyrebirds: Australian options, Brownian bridges, and the average of submartingales," Mathematical Finance, Wiley Blackwell, vol. 28(2), pages 536-549, April.
    25. Mathias Beiglbock & Marcel Nutz, 2014. "Martingale Inequalities and Deterministic Counterparts," Papers 1401.4698, arXiv.org, revised Oct 2014.
    26. Campi, Luciano & Laachir, Ismail & Martini, Claude, 2017. "Change of numeraire in the two-marginals martingale transport problem," LSE Research Online Documents on Economics 68783, London School of Economics and Political Science, LSE Library.
    27. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    28. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mathias Beiglbock & Marcel Nutz & Florian Stebegg, 2019. "Fine Properties of the Optimal Skorokhod Embedding Problem," Papers 1903.03887, arXiv.org, revised Apr 2020.
    2. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    3. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    4. Gaoyue Guo & Jan Obloj, 2017. "Computational Methods for Martingale Optimal Transport problems," Papers 1710.07911, arXiv.org, revised Apr 2019.
    5. Marcel Nutz & Florian Stebegg, 2016. "Canonical Supermartingale Couplings," Papers 1609.02867, arXiv.org, revised Nov 2017.
    6. Nutz, Marcel & Stebegg, Florian & Tan, Xiaowei, 2020. "Multiperiod martingale transport," Stochastic Processes and their Applications, Elsevier, vol. 130(3), pages 1568-1615.
    7. Mathias Beiglböck & Alexander M. G. Cox & Martin Huesmann & Nicolas Perkowski & David J. Prömel, 2017. "Pathwise superreplication via Vovk’s outer measure," Finance and Stochastics, Springer, vol. 21(4), pages 1141-1166, October.
    8. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    9. Mathias Beiglboeck & Alexander Cox & Martin Huesmann, 2017. "The geometry of multi-marginal Skorokhod Embedding," Papers 1705.09505, arXiv.org.
    10. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    11. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    12. Sebastian Herrmann & Florian Stebegg, 2017. "Robust Pricing and Hedging around the Globe," Papers 1707.08545, arXiv.org, revised Apr 2019.
    13. Mathias Beiglbock & Marcel Nutz & Nizar Touzi, 2015. "Complete Duality for Martingale Optimal Transport on the Line," Papers 1507.00671, arXiv.org, revised Jun 2016.
    14. Alessandro Doldi & Marco Frittelli, 2020. "Entropy Martingale Optimal Transport and Nonlinear Pricing-Hedging Duality," Papers 2005.12572, arXiv.org, revised Sep 2021.
    15. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    16. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    17. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    18. Guo, Gaoyue & Tan, Xiaolu & Touzi, Nizar, 2017. "Tightness and duality of martingale transport on the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 927-956.
    19. Marcel Nutz & Florian Stebegg & Xiaowei Tan, 2017. "Multiperiod Martingale Transport," Papers 1703.10588, arXiv.org, revised May 2019.
    20. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.

    More about this item

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2212.14174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.