Has long become longer or short become shorter? Evidence from a censored quantile regression analysis of the changes in the distribution of U.S. unemployment duration
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Addison, John T & Portugal, Pedro, 1987. "On the Distributional Shape of Unemployment Duration," The Review of Economics and Statistics, MIT Press, vol. 69(3), pages 521-526, August.
- Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
- José Mata & José A. F. Machado, 2005.
"Counterfactual decomposition of changes in wage distributions using quantile regression,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
- José A. F. Machado & José Mata, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465, May.
- Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
- Bilias, Yannis & Chen, Songnian & Ying, Zhiliang, 2000. "Simple resampling methods for censored regression quantiles," Journal of Econometrics, Elsevier, vol. 99(2), pages 373-386, December.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Bassett, Gilbert W. & Koenker, Roger W., 1986. "Strong Consistency of Regression Quantiles and Related Empirical Processes," Econometric Theory, Cambridge University Press, vol. 2(2), pages 191-201, August.
- Katharine G. Abraham & Robert Shimer, 2001. "Changes in Unemployment Duration and Labor Force Attachment," NBER Working Papers 8513, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bernd Fitzenberger & Ralf Wilke, 2006.
"Using quantile regression for duration analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
- Bernd Fitzenberger & Ralf A. Wilke, 2006. "Using Quantile Regression for Duration Analysis," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 8, pages 103-118, Springer.
- Fitzenberger, Bernd & Wilke, Ralf A., 2005. "Using Quantile Regression for Duration Analysis," ZEW Discussion Papers 05-65, ZEW - Leibniz Centre for European Economic Research.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pedro Portugal & José Ferreira Machado, 2006.
"U.S. Unemployment Duration: Has Long Become Longer or Short Become Shorter?,"
Working Papers
w200613, Banco de Portugal, Economics and Research Department.
- Pedro Portugal, 2007. "U.S. Unemployment Duration: Has Long Become Longer or Short Become Shorter?," Working Papers 2007/17, Czech National Bank, Research and Statistics Department.
- Machado, José & Portugal, Pedro & Guimarães, Juliana, 2006. "U.S. Unemployment Duration: Has Long Become Longer or Short Become Shorter?," IZA Discussion Papers 2174, Institute of Labor Economics (IZA).
- Oberhofer, Walter & Haupt, Harry, 2005. "Consistency of nonlinear regression quantiles under Type I censoring weak dependence and general covariate design," University of Regensburg Working Papers in Business, Economics and Management Information Systems 406, University of Regensburg, Department of Economics.
- Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
- Rima Rajab & Milan Dražić & Nenad Mladenović & Pavle Mladenović & Keming Yu, 2015. "Fitting censored quantile regression by variable neighborhood search," Journal of Global Optimization, Springer, vol. 63(3), pages 481-500, November.
- Honore, Bo & Khan, Shakeeb & Powell, James L., 2002.
"Quantile regression under random censoring,"
Journal of Econometrics, Elsevier, vol. 109(1), pages 67-105, July.
- Bo Honore & Shakeeb Khan & James L. Powell, 2000. "Quantile Regression Under Random Censoring," Econometric Society World Congress 2000 Contributed Papers 1894, Econometric Society.
- Chen, Songnian & Wang, Qian, 2023. "Quantile regression with censoring and sample selection," Journal of Econometrics, Elsevier, vol. 234(1), pages 205-226.
- Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Parente, Paulo M.D.C. & Smith, Richard J., 2011.
"Gel Methods For Nonsmooth Moment Indicators,"
Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
- Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Robert F. Engle & Simone Manganelli, 1999. "CAViaR: Conditional Value at Risk by Quantile Regression," NBER Working Papers 7341, National Bureau of Economic Research, Inc.
- Ji, Yonggang & Lin, Nan & Zhang, Baoxue, 2012. "Model selection in binary and tobit quantile regression using the Gibbs sampler," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 827-839.
- Jiang, Rong & Qian, Weimin & Zhou, Zhangong, 2012. "Variable selection and coefficient estimation via composite quantile regression with randomly censored data," Statistics & Probability Letters, Elsevier, vol. 82(2), pages 308-317.
- Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
- Heejung Bang & Anastasios A. Tsiatis, 2002. "Median Regression with Censored Cost Data," Biometrics, The International Biometric Society, vol. 58(3), pages 643-649, September.
- Mickaël De Backer & Anouar El Ghouch & Ingrid Van Keilegom, 2020. "Linear censored quantile regression: A novel minimum‐distance approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(4), pages 1275-1306, December.
- Myrthe D’Haen & Ingrid Van Keilegom & Anneleen Verhasselt, 2025. "Quantile regression under dependent censoring with unknown association," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 31(2), pages 253-299, April.
- Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
- Sibelle Diniz & Ana Machado, 2011. "Analysis of the consumption of artistic-cultural goods and services in Brazil," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 35(1), pages 1-18, February.
- repec:bla:germec:v:9:y:2008:i::p:431-456 is not listed on IDEAS
- Eide, Eric & Showalter, Mark H., 1998. "The effect of school quality on student performance: A quantile regression approach," Economics Letters, Elsevier, vol. 58(3), pages 345-350, March.
- Bernd Fitzenberger & Ralf Wilke, 2006.
"Using quantile regression for duration analysis,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 90(1), pages 105-120, March.
- Bernd Fitzenberger & Ralf A. Wilke, 2006. "Using Quantile Regression for Duration Analysis," Springer Books, in: Olaf Hübler & Jachim Frohn (ed.), Modern Econometric Analysis, chapter 8, pages 103-118, Springer.
- Fitzenberger, Bernd & Wilke, Ralf A., 2005. "Using Quantile Regression for Duration Analysis," ZEW Discussion Papers 05-65, ZEW - Leibniz Centre for European Economic Research.
More about this item
Keywords
; ; ; ;JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
- C41 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Duration Analysis; Optimal Timing Strategies
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BEC-2004-10-30 (Business Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:latm04:128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/ecm/latm04/128.html