IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

On multivariate runs tests for randomness

Listed author(s):
  • Davy Paindaveine

This paper proposes several extensions of the concept of runs to the multivariate setup, and studies the resulting tests of multivariate randomness against serial dependence. Two types of multivariate runs are defined: (i) an elliptical extension of the spherical runs proposed by Marden (1999), and (ii) an original concept of matrix-valued runs. The resulting runs tests themselves exist in various versions, one of which is a function of the number of data-based hyperplanes separating pairs of observations only. All proposed multivariate runs tests are affine-invariant and highly robust: in particular, they allow for heteroskedasticity and do not require any moment assumption. Their limiting distributions are derived under the null hypothesis and under sequences of local vector ARMA alternatives. Asymptotic relative efficiencies with respect to Gaussian Portmanteau tests are computed, and show that, while Mardentype runs tests suffer severe consistency problems, tests based on matrix-valued runs perform uniformly well for moderate-to-large dimensions. A Monte-Carlo study confirms the theoretical results and investigates the robustness properties of the proposed procedures. A real data example is also treated, and shows that combining both types of runs tests may provide some insight on the reason why rejection occurs, hence that Marden-type runs tests, despite their lack of consistency, also are of interest for practical purposes.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: RePEc_eca_wpaper_2009_002
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number 2009_002.

in new window

Date of creation: 2009
Publication status: Published by: ECARES
Handle: RePEc:eca:wpaper:2009_002
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Peter Hall & J. S. Marron & Amnon Neeman, 2005. "Geometric representation of high dimension, low sample size data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 427-444.
  2. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
  3. Taskinen, Sara & Kankainen, Annaliisa & Oja, Hannu, 2003. "Sign test of independence between two random vectors," Statistics & Probability Letters, Elsevier, vol. 62(1), pages 9-21, March.
  4. Hallin, Marc & Paindaveine, Davy, 2005. "Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 122-163, March.
  5. Haataja, Riina & Larocque, Denis & Nevalainen, Jaakko & Oja, Hannu, 2009. "A weighted multivariate signed-rank test for cluster-correlated data," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1107-1119, July.
  6. Marc Hallin & Jean-François Ingenbleek & Madan Lal Puri, 1984. "Linear serial rank tests for randomness against ARMA alternatives," ULB Institutional Repository 2013/2167, ULB -- Universite Libre de Bruxelles.
  7. Denis Larocque & Jaakko Nevalainen & Hannu Oja, 2007. "A weighted multivariate sign test for cluster-correlated data," Biometrika, Biometrika Trust, vol. 94(2), pages 267-283.
  8. Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M-Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264.
  9. Marc Hallin & Jean-Marie Dufour & Ivan Mizera, 1998. "Generalized run tests for heteroscedastic time series," ULB Institutional Repository 2013/2077, ULB -- Universite Libre de Bruxelles.
  10. Möttönen, J. & Hüsler, J. & Oja, H., 2003. "Multivariate nonparametric tests in a randomized complete block design," Journal of Multivariate Analysis, Elsevier, vol. 85(1), pages 106-129, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2009_002. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.