IDEAS home Printed from https://ideas.repec.org/p/diw/diwrup/96en.html
   My bibliography  Save this paper

Demand Response in Germany: Technical Potential, Benefits and Regulatory Challenges

Author

Listed:
  • Jan Stede

Abstract

An increased flexibility of the electricity demand side through demand response (DR) is an opportunity to support the integration of renewable energies. By optimising the use of the generation, transmission and distribution infrastructure, DR reduces the need for costly investments and contributes to system security. There is a significant technical DR potential for load reduction from industrial production processes in Germany, as well as from cross-cutting technologies in industry and the tertiary sector.The availability of demand response as a system resource depends on the underlying type of demand. Already today energy-intensive industries market significant demand capacity in the German minute reserve. The DR literature reveals that there is a potential of several gigawatts of additional capacity available for at least one hour in Germany. Demand can also cover longer periods, but this often requires investment, for example in storage capacity for intermediate products.To enable the effective use and full remuneration of demand response, further improvements in power market design are discussed: (i) Enabling third parties (referred to as Demand Side Management Companies) to help business customers realise their flexibility potential; (ii) creating robust intraday and balancing prices in auction platforms as reference prices for longer-term contracts to stabilise revenue streams of flexibility providers; (iii) it needs to be further assessed whether additional catalysing instruments are necessary to initiate investment in new business processes or storage capacity.

Suggested Citation

  • Jan Stede, 2016. "Demand Response in Germany: Technical Potential, Benefits and Regulatory Challenges," DIW Roundup: Politik im Fokus 96, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwrup:96en
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.532827.de/DIW_Roundup_96_en.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    2. Tim Buber & Anna Gruber & Marian Klobasa & Serafin von Roon, 2013. "Lastmanagement für Systemdienstleistungen und zur Reduktion der Spitzenlast," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 82(3), pages 89-106.
    3. Zerrahn, Alexander & Schill, Wolf-Peter, 2017. "Long-run power storage requirements for high shares of renewables: review and a new model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1518-1534.
    4. Neuhoff, Karsten, 2015. "Balancing Responsibility: What model works for Europe?," EconStor Research Reports 125565, ZBW - Leibniz Information Centre for Economics.
    5. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    6. Olsthoorn, Mark & Schleich, Joachim & Klobasa, Marian, 2015. "Barriers to electricity load shift in companies: A survey-based exploration of the end-user perspective," Energy Policy, Elsevier, vol. 76(C), pages 32-42.
    7. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    8. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    9. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Karsten Neuhoff & Isabella Weber & Kacper Szulecki & Andreas Goldthau, 2022. "How to Design EU-Level Contingency Plans for Gas Shortages? Evidence from Behavioural Economics, Policy Research and Past Experience: Final Report," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 127, number pbk177, January.
    2. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. David Ribó-Pérez & Luis Larrosa-López & David Pecondón-Tricas & Manuel Alcázar-Ortega, 2021. "A Critical Review of Demand Response Products as Resource for Ancillary Services: International Experience and Policy Recommendations," Energies, MDPI, vol. 14(4), pages 1-25, February.
    4. Purvins, Arturs & Gerbelova, Hana & Sereno, Luigi & Minnebo, Philip, 2021. "Social welfare impact from enhanced Trans-Asian electricity trade," Energy, Elsevier, vol. 215(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    2. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    3. Leinauer, Christina & Schott, Paul & Fridgen, Gilbert & Keller, Robert & Ollig, Philipp & Weibelzahl, Martin, 2022. "Obstacles to demand response: Why industrial companies do not adapt their power consumption to volatile power generation," Energy Policy, Elsevier, vol. 165(C).
    4. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    5. Michael Schoepf & Martin Weibelzahl & Lisa Nowka, 2018. "The Impact of Substituting Production Technologies on the Economic Demand Response Potential in Industrial Processes," Energies, MDPI, vol. 11(9), pages 1-13, August.
    6. Jan Stede & Karin Arnold & Christa Dufter & Georg Holtz & Serafin von Roon & Jörn C. Richstein, 2020. "The Role of Aggregators in Facilitating Industrial Demand Response: Evidence from Germany," Discussion Papers of DIW Berlin 1840, DIW Berlin, German Institute for Economic Research.
    7. Morales-España, Germán & Martínez-Gordón, Rafael & Sijm, Jos, 2022. "Classifying and modelling demand response in power systems," Energy, Elsevier, vol. 242(C).
    8. Tahir, Muhammad Faizan & Chen, Haoyong & Khan, Asad & Javed, Muhammad Sufyan & Cheema, Khalid Mehmood & Laraik, Noman Ali, 2020. "Significance of demand response in light of current pilot projects in China and devising a problem solution for future advancements," Technology in Society, Elsevier, vol. 63(C).
    9. Stede, Jan & Arnold, Karin & Dufter, Christa & Holtz, Georg & von Roon, Serafin & Richstein, Jörn C., 2020. "The role of aggregators in facilitating industrial demand response: Evidence from Germany," Energy Policy, Elsevier, vol. 147(C).
    10. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    11. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    12. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    13. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    14. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    15. Müller, Theresa & Möst, Dominik, 2018. "Demand Response Potential: Available when Needed?," Energy Policy, Elsevier, vol. 115(C), pages 181-198.
    16. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    17. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    18. Gaspari, Michele & Lorenzoni, Arturo & Frías, Pablo & Reneses, Javier, 2017. "Integrated Energy Services for the industrial sector: an innovative model for sustainable electricity supply," Utilities Policy, Elsevier, vol. 45(C), pages 118-127.
    19. Klaucke, Franziska & Hoffmann, Christian & Hofmann, Mathias & Tsatsaronis, George, 2020. "Impact of the chlorine value chain on the demand response potential of the chloralkali process," Applied Energy, Elsevier, vol. 276(C).
    20. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwrup:96en. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.